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Abstract 
 

 Numerical display of the behavior of strings 
originating inside the critical strip for the Dirichlet Eta 
function provides strong visual evidence for why the 
Riemann hypothesis is most likely true. A modified version 
of the reflection principle is used to justify this claim. The 
strings are generated by the action of the Dirichlet eta 
function on the unit interval of sigma’s for each fixed value 
of t. The t strings can exhibit at least three types of 
behavior. They cannot intersect the origin, they can 
intersect the origin at a point emanating from sigma equal 
0.5, or they can intersect themselves. If only the first two 
possibilities occur the Riemann hypothesis is true. If the 
third possibility occurs and the intersection point is also the 
origin then the Riemann hypothesis is false. Heuristic 
numerical evidence is presented that suggests the Riemann 
hypothesis is true. The results presented in this paper were 
made possible using Wolfram Mathematica 12.  
 



Introduction 
  
 The Riemann hypothesis remains one of the outstanding problems in 
analytic number theory after almost 160 years [1]. It is concerned with the 
distribution of prime numbers and is encapsulated by the Riemann zeta 
function and an equivalent expression written exclusively in terms of primes 
found by Euler [2] much earlier (for real s). 
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in which 𝑠 = 𝜎 + 𝑡𝑖, a complex number with real part 𝜎 and imaginary part 
coefficient 𝑡. The expressions above are valid for 𝜎 > 1 and are absolutely 
convergent there. In [1] Riemann used analytic continuation to extend the 
zeta function into the regime 0 < 𝜎 < 1 (and into the regime 𝜎 < 0) and 
found the Dirichlet eta function equation (conjectured by Euler in 1749) 
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This result involves conditionally convergent series and must be handled 
with care. In the form 
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it provides a way of computing the zeta function for 0 < 𝜎 < 1 in terms of 
the alternating eta series. The eta series is the difference between even 𝑛 
terms and odd 𝑛 terms. If these terms are summed separately, the sub-series 
of all odd 𝑛 and the sub-series of all even 𝑛 diverge. 
  
 Also in [1] Riemann established the reflection formula for 0 < 𝜎 < 1 
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Using this equation together with the equation just above it yields the 
reflection formula for the eta function 
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There are zeroes of zeta and eta of three kinds. There are some so-called 
trivial zeroes for 𝑠 = 𝜎 = −2,−4,… created by the sine term. There are also 
trivial zeroes associated with the factor !!!

!!!

!!!!
. These are of the form 

1 − 𝑖 !!!
!" (!)

 for integer 𝑘. The remaining non-trivial zeroes of zeta are also 
non-trivial zeroes for eta and visa versa. The critical strip defined by 
0 < 𝜎 < 1 and −∞ < 𝑡 < ∞ contains these non-trivial zeroes. The Riemann 
hypothesis is: 𝝈 = 𝟎.𝟓 for all non-trivial zeroes. In 2004, Gourdon [3] 
verified the hypothesis for the first 10!" zeroes using an algorithm invented 
by Odlyzko [4]. 
 

A modified reflection formula 
 
 The reflection formulas for zeta and eta given in the introduction are 
most useful when considering zeroes of zeta/eta. The trivial zeroes account 
for all zeroes due to factors other than zeta/eta in the reflection equations. 
Only the non-trivial zeroes remain to be studied strictly inside the critical 
strip. The other factors do not vanish inside the critical strip. Here we will 
focus attention directly on the eta function. Two results will be of use later in 
the paper. The first result is 
 

Lemma 1: if 𝑠! is a zero of eta then so is 𝑠!*. 
 

For general analytic functions, 𝐹, it is very easy to construct a counter-
example to the statement that if z is a zero of 𝐹, then so is 𝑧*. The structure 
of eta, however, makes the statement of Lemma 1 true. 
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Since both the real and the imaginary parts must vanish separately, one is 
free to replace the – 𝑖 by +𝑖 in the last line and that implies 𝜂 𝑠! ∗ = 0.  
 
The second result is the modified reflection formula [5] 
 

Lemma 2: if 𝑠! is a zero of eta then so is 1 − 𝑠!*. 
 

If  𝑠! is a zero of eta then the eta reflection formula implies that 1 − 𝑠! is 
also a zero of eta. By Lemma 1 this means that 1 − 𝑠!* is also a zero of eta. 
 
 The modified reflection formula can be expressed: if 𝜎! + 𝑡!𝑖 is a zero 
of eta then so is 1 − 𝜎! + 𝑡!𝑖. These two expressions have the same 
imaginary parts and that is key to what follows. 
 

Visualization of the genesis of zeroes 
 
 Displaying the behavior of eta visually greatly enhances our ability to 
understand how and why the non-trivial zeroes of eta (zeta) occur for 
𝜎 = 0.5. We begin by restricting the argument of eta to the real axis of the 
critical strip. For 𝜎 ∈ 0, 1  we find 𝜂 𝜎 ∈ 0.5, 𝑙𝑛 2 . The unit interval 
for 𝜎 is compressed by 𝜂 into an interval of length 0.193…. Because 𝜂 is 
continuous and infinitely differentiable in both 𝜎 and 𝑡, we expect that small 
variations in 𝑡 will create small variations in 𝜂. We know that the first zero 
of eta has an imaginary part slightly bigger than 14. Therefore we will begin 
by looking at what happens to a set of points for 𝜎 = .02, .04, .08,… , .98 
(steps of .02) and for a fixed value of 𝑡. The choice of discrete values of 𝜎 is 
imposed in order to keep the magnitude of the computation reasonable. For 
the first figure below, the choice of spacing works pretty well and the sets of 
points for a fixed 𝑡 represent a string very well. Some discreteness does 
appear in the longer segments (larger 𝑡 values) and shows a non-uniform 
density. 
 
 
 
 
 
 
 



 
 
 

 
 
For users of Mathematica 12 this figure is the output of a manipulation of 
the program written as 
 
Table[Sum[((-1)^(n - 1))*(1/((n)^sig))*Exp[-t*Log[n]*i],{n, 1, ∞}], {sig, 
.02, .98, .02}, {t, 1, 14, 1}] 
 
There is a lot of information in this figure. Each string (I allow a string to 
have curvature, a slight amount in this figure, and much more in later 
figures) is labeled by 𝑡 and is made up of the values of eta for 𝑡 and for 49 
evenly spaced values of 𝜎 with the 25th value equal to 0.5. There are 14 
strings in the figure corresponding to 14 values of 𝑡 from 1, 2, 3, … , to 14. 
The 𝑡 =  1 string is located near the 1 on the abscissa at about 10 o’clock. It 
is the shortest string in the plot, slightly larger than 0.193 (the arc length for 



the case 𝑡 = 0). As we go clock-wise we see the strings for 𝑡 = 2, 3, 4, 5, and 
6. Clearly they are getting longer in arc length and are moving away from 
the origin. String 6 appears below the abscissa at about 4 o’clock. The points 
on the string are arranged with the small values of 𝜎 distal to the 1 on the 
abscissa and the larger values of 𝜎 proximal to the 1 on the abscissa. Since 
the eta values for uniformly spaced 𝜎’s are not uniformly spaced the 𝜎 = 0.5 
value of eta is not halfway along the length of the string. By enlarging the 
figure the location of this special 𝜎 can be found. The 9th and the 14th strings 
are close to each other just before 9 o’clock. The 9th string is the shorter of 
the two. It’s 𝜎 = 1 value (actually 0.98 in this plot) is closest to the origin. It 
looks like a slight adjustment in the 𝑡 value would put the 𝜎 = 1 right on the 
origin. Indeed, 𝑡 = 9.0647… does do so. This corresponds precisely with a 
trivial zero given above by 1 − 𝑖 !!!

!" (!)
 for the case of 𝑘 = 1. Similarly the 

14th string looks like an adjustment of its 𝑡 value would possibly put 𝜎 = 0.5 
on the origin. Let us try 𝑡 = 14.134725…. This is plotted below. 
 

 
 



 
The lower string is the 𝑡 = 14 string from the previous plot. The difference 
in apparent slope is the result of different aspect ratios in the two plots. The 
upper curve is for 𝑡 = 14.134725, the imaginary part of first non-trivial 
zero for eta. Moreover, 𝜎 = 0.5 corresponds with the 25th dot in the 49 dot 
representation of the 𝜎 interval (it can be located by counting from the left). 
As you can see the typical value for a dot is a real part in the tenths and an 
imaginary part in the tenths as well. However the 25th 𝜎 dot has the eta value 
1.62123×10!! − 2.6635×10!! 𝑖. Since we have expressed the 𝑡 for the 
first zero of eta to only one part in 10!! we cannot expect to get “zero” to 
any better precision. The smaller values of 𝜎 produce the points to the left in 
the figure and the larger values of 𝜎 produce the points to the right in the 
figure. 
 
 The question that shouts out from this account is why does the string 
intersect the origin at 𝜎 = 0.5 ?! This is where the modified reflection 
formula comes into play.  
 

Theorem:  
A string labeled by 𝑡 can intersect the origin only for 𝜎 = 0.5. 

 
Suppose that a string labeled by 𝑡! does intersect the origin for the value 𝜎!. 
Therefore  𝜎! + 𝑡!𝑖 is a zero of eta.  The modified reflection formula states 
that 1 − 𝜎! + 𝑡!𝑖 is also a zero. Since these two zeros have the same 𝑡! they 
are on the same string. No string can intersect a point (the origin) more than 
once. Thus the two points must be the same point: 𝜎! + 𝑡!𝑖 = 1 − 𝜎! + 𝑡!𝑖 
which implies 𝜎! = 0.5. 
 
 There is one possibility that would invalidate this conclusion. What 
happens if the string intersects itself? That is suppose that 𝜎! + 𝑡!𝑖 and 
1 − 𝜎! + 𝑡!𝑖 are zeroes of eta and 𝜎! ≠ 0.5. Then the string intersects itself 
at the origin producing a loop there. Thus the Riemann hypothesis would be 
false. To investigate this possibility further we will have to look at the 
behavior of strings for much larger values of 𝑡, because for the small values 
exhibited in the figures so far there is no reason to suspect self-intersections. 
 

Complexity of strings for large t 
 



 Let us begin our study of large 𝑡 strings with the value 
𝑡 =  267653395648.8475231278. This has 22 digits, 12 to the left of the 
decimal point and 10 to the right. We have it on good authority that this is 
the imaginary part of a zero [4]. If we compute the eta values for all 49 𝜎 
points and for this value of 𝑡 then we get 

 
 
Note the scale. The arc length is more than 14,000. The point distal to the 
origin is the eta value for 𝜎 = .02. After the first 7 discrete points the 
remaining 42 points are a smear. By restricting 𝜎 to the values (.42, .44, .46, 
.48, .5, .52, .54, .56, .58) we obtain a blow-up of the region around the 
origin. The point at the origin has the value 0.000939283 + 0.00431777𝑖 
which is incredibly small compared to the other values of points in the plot. 
 
 



 
 
The small values of 𝜎 make up the points on the left branch whereas the 
large values of 𝜎 make up the points on the right branch. Unlike before it 
appears that the large 𝜎 values of eta are receding from the origin like the 
small 𝜎 values but in a different direction. This is incorrect as can be seen by 
including more points. If we include 𝜎 values from .38 to .98 in steps of .02 
then we get 
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The right branch does not go very far out but instead turns inward making 
the whole plot a kind of logarithmic spiral. You can count the 24 dots to the 
right of the origin. On the left there are 22 more dots unseen because they 
are too far out for the scale of this plot (they can be seen in the first plot for 
this value of 𝑡).  
 
 Note that we have referred to 𝑡 =  267653395648.8475231278 as a 
large value of 𝑡. That is a matter of perspective. Clearly there are still larger 
values with zillions of digits. What do the strings look like for such larger 
values, that are still finite and therefore not really so big. Does the 
logarithmic spiral like structure seen above develop more turns but remain 
non-self-intersecting, implying that the Riemann hypothesis is true, or do 
self-intersections begin to occur, at the origin, for some large threshold value 
of 𝑡, implying that the Riemann hypothesis is false?  
 



Observation of self-crossing t-strings 
 
 If it could be proved that 𝑡-strings are never self-crossing then the 
Riemann hypothesis (RH) is true, following from the theorem above. All my 
attempts at a proof failed. Finally the contrary position was adopted and it 
did not take long to find a counter-example. From Odlyzko’s tables [4] of 
large 𝑡’s we chose 𝑡 =  267653395648.8475231278 to use above. In the 
first figure above where small values of 𝑡, 1, 2 … 14, are looked at the 𝑡- 
strings are slightly curved. For the large Odlyzko 𝑡 values, such as the one 
we have selected, one end of the 𝑡- string is tightly wound (the end 
emanating from 0 . 5 < 𝜎 < 1). By moving 𝑡 slightly away from its value as 
the imaginary part of an eta zero we get a crossing: 
 

 
 
 
The value of 𝑡 is 267653395648.83. The left branch (the end emanating from 
0 < 𝜎 < 0.5) shoots down to −199897 − 605732 𝑖 that is too big to be 



plotted with the loop crossing that occurs for large 𝜎’s. Note that for the 
overall scale of this 𝑡- string the crossing occurs rather close to the origin. 
The dots correspond with choosing 𝜎 to go from 0.005 to 1.0 in steps of 
0.005. This plot only uses 𝜎 from 0.495 to 1.0 in steps of 0.005 so that the 
long tail does not dominate the plot. There are 102 dots. The dot next to the 
ordinate at -1.34 is the dot for 𝜎 = 0.5. Clearly the crossing is for two 
different values of 𝜎. Indeed the crossing points are both for values of 𝜎 that 
are bigger than 𝜎 = 0.5. Moreover, the use of Odlyzko’s zero, unchanged, 
clearly shows that the origin is crossed for 𝜎 = 0.5 
 

 
 
The spacing of the dots is 4 times coarser in this figure compared to the one 
above it. The increase in the value of 𝑡 for this figure (a zero), needed to get 
the value for 𝑡 in the preceding figure (a crossing), is just 0.0175231278 out 
of 2.6765339564883×10!!. However, for this value of 𝑡 (a zero) there is 
no longer a self-crossing of the 𝑡-string. 
 



 After making a more extensive search for examples of crossings it 
was found that 𝑡 needn’t be so large. For 𝑡 = 231.61 a tight hairpin crossing 
occurs. The figure below shows this feature for 𝜎 from 0.5 to 1 in steps of 
0.005. This crossing value, 𝑡 =  231.61, is about midway between the 
imaginary parts of two zeros: 231.250188700 and 231.987235253. However 
at the 𝑡 values for the two zeros there are no crossings. 
 

 
 
 Another example of a robust crossing for small 𝑡 is for 𝑡 = 357.60, 
about half way between the imaginary parts of two zeros: 357.151302252 
and 357.952685102. The features are the same as above, 𝜎 from 0.5 to 1 in 
steps of 0.005. However at the 𝑡 values for the two zeros there are no 
crossings. 
 
 



 
 

Discussion 
 
 Had we been able to prove that every 𝑡- string never has a self-
crossing then we would have a proof of the RH. That these curves can self-
intersect has been demonstrated by examples. This is not equivalent to a 
disproof of the RH. Only if we can demonstrate a self-intersection 
coincidently at the origin as well, would we have a disproof (a zero and two 
values of 𝜎 ≠ 0.5). So far we have an example of a self-crossing loop 
formation tantalizingly close to the origin. The crossing in the first crossing 
plot above, for large 𝑡, is located with a real part of size 0.9 and an 
imaginary part of size −1.15, whereas the arc-length of the entire 𝑡-string 
(not shown) is of order 6.3×10!. Typically the small values of 𝜎 are 
transformed by eta into a very long tail with only slight overall curvature, 
and certainly no crossings. The effect of eta on large values of 𝜎 is to 
produce a tightly wound segment of very limited extent and sometimes with 
crossings. So far a crossing for a 𝜎 less than 0.5 has not been observed. Only 
a value slightly less than 0.5 would be possible for a crossing because the 



structure of the long, small 𝜎, tails is incompatible with crossings. Such a 
crossing for 𝜎 slightly less than 0.5 at the origin would require a partner 𝜎 
slightly larger than 0.5 according to the modified reflection formula. The 
loop formed in this way would contain the image of 𝜎 = 0.5 on its interior 
and not at the zero. If such an example can be found RH is false. If instead it 
can be shown that crossings never happen for 𝜎 < 0.5 then RH is true. 
 
 Analytically finding conditions for self-intersections of 𝑡- strings and 
then finding additional conditions for crossing points to be coincident with 
the origin may prove as demanding as, say, proving or disproving RH. 
Having found examples of self-crossings by accident does not mean that 
finding crossings at the origin will be as easy (they may not exist). Any 
mathematical analysis will involve logarithms, trigonometric functions and 
of course the prime numbers. Each of these is overtly evident in the eta 
function in the form of trigonometric functions of logarithms of primes. 
Complex analysis, algebra and differential/integral calculus play their roles 
as well. In this paper, however, the emphasis is on the computer based 
computational heuristics of 𝑡-strings. At first it was thought that proving that 
𝑡- strings never intersect themselves would be enough, until it was realized 
that it is not true. Such intersections take place for large 𝑡 and for small 𝑡. 
However, observations so far suggest that intersections never occur for the 𝑡 
values for zeros and zeros never occur for 𝑡 values of intersections. Instead 
of proving there cannot be crossings, which is false, it is enough to prove 
that crossings never occur for 𝑡 values of zeros or for 𝜎 < 0.5. This suggests 
that RH is true. What can happen when 𝑡 is truly large, so that ln(ln[𝑡]) is 
very large, say, is unknown. Possibly more ornate multiple crossings are 
possible. 
 
 RH has tempted many and many different approaches have been tried. 
Some approaches have led to novel developments in both old and new fields 
of mathematics. Numerous equivalent problems have been identified. 
Hundreds of incorrect analyses have been proffered. Even some great 
mathematicians have been stymied. For myself I have enjoyed this sojourn 
into the unfathomable, the ineffable and the arcane. Perhaps this heuristic 
visualization construct, the 𝑡-line-segment, will enable a few others to more 
clearly see the meaning of RH. 
 
 In the first figure 14 line segments have been plotted together. If 𝑡 is 
interpreted as time then one can make a movie that shows the sequence of 𝑡-



strings one after the other. In reality the strings do not evolve from each 
other sequentially. Each emanates from a fixed 𝑡 and the unit interval of 𝜎’s. 
However, a movie would illustrate how the line segments smoothly adjust as 
zero crossings occur and as self-crossings come and go. 
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