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Gibbs entropy is invariant for the Baker map. A Jordan basis spectral decomposition of the Baker
Frobenius-Perron operator suggests that any initial density evolves to the stationary density that has
maximal entropy. This entropy conundrum is resolved by considering the difference between weak
and strong convergence. A binary representation is used to make these points transparent. ©1998
American Institute of Physics.@S1054-1500~98!02002-3#
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The study of simple dynamical systems such as maps ca
clarify the understanding of phenomena in much more
complicated and realistic systems. The Baker map has
been studied for this reason. It is an invertible, chaotic
map. Gibbs entropy is conserved during time evolution
generated by the Baker map. However, construction of a
Jordan basis for the Baker Frobenius-Perron operator
and construction of the spectral decomposition for this
operator strongly suggest that the Baker map takes any
initial probability density to the stationary density that
has maximal entropy. This is in conflict with the conser-
vation of Gibbs entropy. In this paper, it is shown that
this conflict stems from the difference between weak and
strong convergence, and that the limit of the entropy and
the entropy of the limit are not equal. These features are
made transparent through use of a binary representa-
tion. The results clarify understanding of the approach to
the Gibbs microcanonical ensemble in real classical me
chanical systems.

I. INTRODUCTION

In a recent paper,1 the construction of the Jordan bas
for the Baker map was given by a straight-forward recurs
formula. With this basis, a spectral decomposition of
Frobenius-Perron operator for the Baker map is easily c
structed. This decomposition makes the decay of correlat
for the invertible, chaotic Baker map patent. Nevertheles
produces the conundrum that apparently any initial proba
ity density decays to the invariant density, equal to the c
stant 1 on the unit square for the Baker map, while the Gi
entropy is known to be an invariant. Since the primary p
pose of the study of simple maps is to lay bare the dynam
details, this paper is written to explicitly demonstrate that
inconsistency exists. The resolution of the conundrum
volves consideration of the differences between weak
strong convergence. Using the spectral decomposition of
Frobenius-Perron operator and an associated binary repre
tation, we show that the limit of multiple iterations of th
4621054-1500/98/8(2)/462/4/$15.00
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Frobenius-Perron operator on the probability density is
key. The limit of the entropy and the entropy of the limit a
not equal.

These ideas are not new. They have their origin in ear
work on Pollicot-Ruelle resonances.2 The extension of these
ideas to discrete maps, including the Baker map, has b
treated extensively by several authors.3,4 These papers con
tain the spectral decomposition of the Frobenius-Perron
erator and a discussion of the decay of correlations, as
as the issue of convergence. Elsewhere,5 the time evolution
of the Gibbs entropy for the Baker map has been explo
and its invariance has been demonstrated. The direct con
tion with the problem of convergence has also be
elucidated.5 Resolution of the apparent conflict1 of the spec-
tral decomposition perspective with the entropy evoluti
perspective is the purpose of this paper.

Mackey has shown5~a! that the Baker map is mixing, tha
a necessary and sufficient condition for mixing is weak co
vergence to a unique stationary density for all initial den
ties, that correlations decay, but thatmixing is not sufficient
to ensure the convergence of the entropy to a maximum.

The Baker map acts on the unit (x,y)-square. Denote a
probability density on the unit square byf (x,y). The Gibbs
entropy functional,S@ f #, is defined by5~a!

S@ f #52E
0

1

dxE
0

1

dy f~x,y!ln@ f ~x,y!#. ~1!

Denote the Frobenius-Perron operator for the baker map
PBaker. The invariance of the Gibbs entropy1,5~a! may be ex-
pressed by

S@PBakerf ~x,y!#5S@ f ~x,y!#. ~2!

Denote the Jordan basis for the Baker map by1 up,n&J . Ex-
press an initial probability density by the expansion

f ~x,y!5 (
p50

`

(
n50

p

Cpnup,n&J . ~3!
© 1998 American Institute of Physics
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It has been shown1,4~b! that the nth iterate of the Baker
Frobenius-Perron operator on a Jordan state produces the
mula

PBaker
n up,n&J5 (

k50

[n,p2n] min n!

k! ~n2k!!

1

2~n2k!p up,n1k&J .

~4!

Sinceu0,0&J51 for all x and y, the integral off (x,y) over
the unit square equals 1 sincef (x,y) is a probability density,
and1

E
0

1

dxE
0

1

dyup,n&J5dp0dn0 ; ~5!

it follows that

C0051. ~6!

Therefore, Eqs.~3!, ~4! and ~6! combine to imply

Limit
n→`

PBaker
n f ~x,y!5u0,0&J . ~7!

Therefore,

S@Limit
n→`

PBaker
n f ~x,y!#50>S@ f ~x,y!#, ~8!

with a strict inequality if

f ~x,y!Þu0,0&J . ~9!

Thus, for any initial density other than the invariant dens
u0,0&J , it would appear that the entropy does converge to
maximum. This is the conundrum referred to above.

The resolution of this conundrum stems from the imp
cise use of the concept of limit in Eq.~7!. We show below
that convergence is in the weak sense and not in the st
sense. The entropy of the weak limit does not equal the li
of the entropy. These facts are most transparently seen u
a binary representation for a special case.

II. BINARY REPRESENTATIONS

The Frobenius-Perron operator for the Baker map
the explicit form1,5~a!

PBakerf ~x,y!5 f S x

2
,2yDQS 1

2
2yD

1 f S x

2
1

1

2
,2y21DQS y2

1

2D , ~10!

whereQ is the Heaviside function. Let the setA be defined
by

A5$~x,y!uy, 1
2 % ~11!

and denote the characteristic function onA by 1A . Choose as
the initial probability density

f ~x,y!5231A . ~12!

Clearly, this initial density has the value 2 in the lower h
of the unit (x,y)-square and the value 0 in the upper half a
is normalized to unity. An application of the Bake
Frobenius-Perron operator, according to Eq.~10!, produces a
density with four horizontal strips in the unit (x,y)-square,
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two with the value 2 for allx and with 0<y,1/4 or with
1/2<y,3/4, and two with the value 0 for allx and with
1/4<y,1/2 or with 3/4<y,1. Clearly, the next iteration o
the operator will produce eight alternating horizontal str
of 2’s and 0’s. What is the limit of this iteration process
One might guess that the answer is infinitely many infinite
mally thin alternating strips of 2’s and 0’s. The correct a
swer, however, is the stationary density that equals 1 ev
where on the unit square. This will be demonstrated belo

In Ref. 1, we showed that the Jordan basis for the Ba
map can be constructed from expansions in terms of prod
states denoted byum,n& that are defined by

um,n&5Rm~x!Ln~y!, ~13!

in which Rm(x) andLn(y) are, respectively, proportional t
the eigenfunctions of the Frobenius-Perron operator for
Bernoulli map and the Koopman operator for the Bernou
map. The corresponding adjoint states are denoted by^ j ,ku,
are given by1

^ j ,ku5L j~x!Rk~y!, ~14!

and satisfy biorthogonality,

^ j ,kum,n&5d jmdkn . ~15!

Thus, instead of an expansion in terms of the Jordan ba
we can treat this special case with an expansion in term
these product states,

231A5 (
m50

`

(
n50

`

Cmnum,n&. ~16!

Equations~15! and ~16! imply

Cmn5^m,nu231A&52E
0

1

dxLm~x!E
0

1/2

dyRn~y!

5dm0E
0

1

dyRn~y/2!, ~17!

in which an integral property1 of theLm(x)’s and a change of
variables fromy to y/2 have been used. This result implie
that the expansion given in Eq.~16! can be simplified to

231A5u0,0&1 (
n51

`

C0nu0,n&. ~18!

The stateu0,0& is identical1 with the Jordan stateu0,0&J . The
normalization of the initial state given by Eqs.~12! and~18!
is accounted for by theu0,0& term alone since theu0,n& states
each integrate over the unit square to zero.1 While we can
give an explicit expression for generation of the coefficien
C0n , their explicit values will not be required for the rest o
this discussion. Theu0,n& states have a very nice property1

they are eigenstates of the Baker Frobenius-Perron oper
i.e.,

PBakeru0,n&5
1

2n u0,n&. ~19!
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This is a very special case of a much more complica
formula1 for the application ofPBaker to general product
statesum,n& with mÞ0 that are not generally eigenstate
Clearly, we now get

PBaker
n 231A5u0,0&1 (

k51

`

C0k

1

2nk u0,k&, ~20!

wherein we have changed the summation indexn of Eq. ~18!
to k in this equation. It is now apparent that

Limit
n→`

PBaker
n 231A5u0,0&, ~21!

and we have again obtained the entropy conundrum: the
tropy of this limit is maximal with the value 0, whereas th
entropy of the initial state is2 ln(2), but the Baker
Frobenius-Perron operator preserves the entropy!

What is happening here? For any finite value ofn, the
state on the right-hand side of Eq.~20! has a graph on the
unit square made up of 2n11 alternating horizontal strips
with values of 2 or 0 as was discussed above. It is eas
verify that the entropy for any of these states is2 ln(2), the
invariant value corresponding with the initial value. Only
the limit does the value of the entropy change disconti
ously to the value 0. To see how this comes about, we u
binary representation. Let .b1b2b3 . . . denote a general bi
nary representation of a numbery in the unit interval. The
numbery is given explicitly by

y5(
j 51

`
bj

2 j , ~22!

where thebj ’s are either 0 or 1. Thus, the function 231A has
the value 2 for all binary representations expressible
.0b2b3b4 . . . and the value 0 for all those expressible
.1b2b3b4 . . . whereb2 ,b3 ,b4 , etc. may be either 1 or 0. W
write this in the form

231A5 H2,
0,

for .0b2b3b4 . . .
for .1b2b3b4 . . . J . ~23!

Clearly, an application of the Baker Frobenius-Perron ope
tor produces

PBaker231A5H 2,
2,
0,
0,

for .00b3b4b5 . . .
for .10b3b4b5 . . .
for .01b3b4b5 . . .
for .11b3b4b5 . . .

J . ~24!

Notice that the distinction between the values 2 and 0 res
in the second binary position as opposed to the first bin
position for Eq.~23!. A second application of the operato
yields

PBaker
2 231A55

2,
2,
2,
2,
0,
0,
0,
0,

for .000b4b5b6 . . .
for .010b4b5b6 . . .
for .100b4b5b6 . . .
for .110b4b5b6 . . .
for .001b4b5b6 . . .
for .011b4b5b6 . . .
for .101b4b5b6 . . .
for .111b4b5b6 . . .

6 . ~25!
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Now the distinction between the values 2 and 0 resides in
third binary position. The first two binary positions in th
case are identical for values 2 and 0 and range over all p
sible (22) two digit binary expansions. It should now b
clear what happens as we continue to iterate the opera
After n iterations, the initialn binary digit segments will be
identical for both values 2 and 0 and will exhaust then

possibilities, while then11 binary digit will distinguish the
two cases, and all succeeding binary digits may have
possible values. For finite but arbitraryn, a distinction re-
mains ~in position n11! that reflects the alternating stri
structure of the graph of the function. However, in the in
nite limit, all possible binary digit sequences occur for t
value 2 and all possible binary digit sequencesalsooccur for
the value 0. The function has the averaged value, 1, at e
point y in the unit interval; thus the function is equal to 1 o
the entire unit square. The limit expressed by Eq.~21! is
indeed obtained.

A sequence$ f n% of L1 functions is said to beweakly
convergentto anL1 function f if

Limit
n→`

E
0

1

dy fn~y!g~y!5E
0

1

dy f~y!g~y!, ~26!

for all L`g(y)’s.5~a! By studying the behavior for arbitrary
characteristic functions 1B , whereB is any measurable set i
the unit square, in place of theg’s, it is possible to prove tha
Eq. ~21! is meaningful as weak convergence. In essen
very fine alternating strips of 2’s and 0’s integrated agains
function g yield the same result as integratingg against the
constant 1.

A sequence$ f n% of Lp functions is said to bestrongly
convergentto anLp function f if

Limit
n→`

i f n2 f i50, ~27!

wherein i¯i denotes theL1 norm.5~a! For the sequence o
functions given in Eq.~20! as the f n’s and for the limit
function given in Eq.~21! as thef , we find instead

Limit
n→`

i f n2 f i51. ~28!

Thus, we do not have strong convergence.
Equation~21! is meaningful in the sense of weak co

vergence which means only when both sides are used in
an integral. Weak convergence permits us to use the spe
decomposition of the Frobenius-Perron operator in corre
tion functions where an integral is performed as part of
definition of the correlation function.3~c!,4~b! This makes the
decay of correlations manifest. The density does converg
the invariant density, but only in the weak sense, so that
limit of the entropy equals the initial entropy, but is unequ
to the entropy of the weak limit.

The behavior illuminated by the Baker map clarifies t
Gibbs picture of the time evolution of a phase space dis
bution for a classical mechanical system. Gibbs’ picture
that any initial distribution evolves to an intricate, high
filamentous structure that ultimately becomes dense on
energy surface. But it does not literally become the Gib
microcanonical ensemble that uniformly covers the ene
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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surface! If it did, then there would be a discontinuous jum
in the Gibbs entropy in the limit. Thus the approach to t
microcanonical ensemble isweak convergence, and requires
that we use the microcanonical ensemble in integrals to c
pute expectation values and correlations.
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