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Entropy evolution for the Baker map

Ronald F. Fox
School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430

(Received 3 September 1997; accepted for publication 15 March) 1998

Gibbs entropy is invariant for the Baker map. A Jordan basis spectral decomposition of the Baker
Frobenius-Perron operator suggests that any initial density evolves to the stationary density that has
maximal entropy. This entropy conundrum is resolved by considering the difference between weak
and strong convergence. A binary representation is used to make these points transpaf€&@8 ©

American Institute of Physic§S1054-150(08)02002-3

The study of simple dynamical systems such as maps can
clarify the understanding of phenomena in much more
complicated and realistic systems. The Baker map has
been studied for this reason. It is an invertible, chaotic
map. Gibbs entropy is conserved during time evolution
generated by the Baker map. However, construction of a
Jordan basis for the Baker Frobenius-Perron operator
and construction of the spectral decomposition for this
operator strongly suggest that the Baker map takes any
initial probability density to the stationary density that
has maximal entropy. This is in conflict with the conser-
vation of Gibbs entropy. In this paper, it is shown that
this conflict stems from the difference between weak and
strong convergence, and that the limit of the entropy and
the entropy of the limit are not equal. These features are
made transparent through use of a binary representa-
tion. The results clarify understanding of the approach to
the Gibbs microcanonical ensemble in real classical me-
chanical systems.

I. INTRODUCTION

In a recent paperthe construction of the Jordan basis

Frobenius-Perron operator on the probability density is the
key. The limit of the entropy and the entropy of the limit are
not equal.

These ideas are not new. They have their origin in earlier
work on Pollicot-Ruelle resonancédhe extension of these
ideas to discrete maps, including the Baker map, has been
treated extensively by several authdfsThese papers con-
tain the spectral decomposition of the Frobenius-Perron op-
erator and a discussion of the decay of correlations, as well
as the issue of convergence. Elsewhetiee time evolution
of the Gibbs entropy for the Baker map has been explored
and its invariance has been demonstrated. The direct connec-
tion with the problem of convergence has also been
elucidated® Resolution of the apparent conffiaf the spec-
tral decomposition perspective with the entropy evolution
perspective is the purpose of this paper.

Mackey has showi’ that the Baker map is mixing, that
a necessary and sufficient condition for mixing is weak con-
vergence to a unique stationary density for all initial densi-
ties, that correlations decay, but thraixing is not sufficient
to ensure the convergence of the entropy to a maximum

The Baker map acts on the unit,{)-square. Denote a
probability density on the unit square byx,y). The Gibbs
entropy functional§[ ], is defined by®

for the Baker map was given by a straight-forward recursion

formula. With this basis, a spectral decomposition of the 1 1

Frobenius-Perron operator for the Baker map is easily con- S[f]=— fo dxfo dyf(x,y)In[f(x,y)]. @
structed. This decomposition makes the decay of correlations

for the invertible, chaotic Baker map patent. Nevertheless, i
produces the conundrum that apparently any initial probabil
ity density decays to the invariant density, equal to the con
stant 1 on the unit square for the Baker map, while the Gibb

benote the Frobenius-Perron operator for the baker map by
Pgaker- The invariance of the Gibbs entrd¥? may be ex-

gressed by

entropy is known to be an invariant. Since the primary pur- _
pose of the study of simple maps is to lay bare the dynamical A Psaked (4Y)]=LTC6Y)]. @

details, this paper is written to explicitly demonstrate that n

volves consideration of the differences between weak an

inconsistency exists. The resolution of the conundrum inO_Denote the Jordan basis for the Baker map lyv), . Ex-

Bress an initial probability density by the expansion

strong convergence. Using the spectral decomposition of the © p
Frobenius-Perron operator and an associated binary represen- f(x,y)= E E Coulp. ), 3)
’ py ) .

tation, we show that the limit of multiple iterations of the
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It has been showr® that the nth iterate of the Baker two with the value 2 for allx and with O<y<1/4 or with
Frobenius-Perron operator on a Jordan state produces the fdr2<y<3/4, and two with the value 0 for alt and with
mula 1/4<y<1/2 or with 3/4&<y< 1. Clearly, the next iteration of
[n.p= vl min ol 1 the operator will prodgce eiglht.alterne}tir?g horizontal strips
Pl elp.v)y= 2 : ——|p,v+K);. of 2’s and 0’s. What is the limit of this iteration process?
axe o ki(n—k)! 2(nkp One might guess that the answer is infinitely many infinitesi-
(4)  mally thin alternating strips of 2's and 0’s. The correct an-
Since|0,0),=1 for all x andy, the integral off(x,y) over  SWer, however, is the stationary density that equals 1 every-
the unit square equals 1 sintex,y) is a probability density, Where on the unit square. This will be demonstrated below.

and In Ref. 1, we showed that the Jordan basis for the Baker
L L map can be constructed from expansions in terms of product
fo dxfo dylp, ¥),= 8p00s0: (5) states denoted byyn,n) that are defined by
m,n)=R (X)L , 13
it follows that M) =R () Lo(y) a3
Com1 6) in which R,(x) andL,(y) are, respectively, proportional to
00—+ _ _ the eigenfunctions of the Frobenius-Perron operator for the
Therefore, Egs(3), (4) and(6) combine to imply Bernoulli map and the Koopman operator for the Bernoulli
LimitP2 ., f(x,y)=|0,0);. @) map._The corresponding adjoint states are denotegj fy,
o are given by
Therefore, (i kl=Lj(x)R(y), (14)
S{LimitPgaer f(x,y)]=0=Sf(x.y)], ®) and satisfy biorthogonality,
n—oo
with a strict inequality if (i, KIm,n)= 8jmdkn- (15)
f(x,y)#/0,0);. ) Thus, instead of an expansion in terms of the Jordan basis,

Thus, for any initial density other than the invariant density,We can treat this special case with an expansion in terms of
|0,0);, it would appear that the entropy does converge to athese product states,
maximum This is the conundrum referred to above. o o
The resolution of this conundrum stems from the impre- _
cise use of the concept of limit in E¢7). We show below 2 1A_mE:o nZO Crorlm. ). (18
that convergence is in the weak sense and not in the strong
sense. The entropy of the weak limit does not equal the limiEquations(15) and (16) imply
of the entropy. These facts are most transparently seen using "

a binary representation for a special case. Cmn:<mrn|2><1A>:2fldXLm(X) dyR,(y)
0 0

IIl. BINARY REPRESENTATIONS 1
= 5m0f0 dyRy(y/2), (17)

The Frobenius-Perron operator for the Baker map has

the explicit form-53
in which an integral propertyof theL,(x)’s and a change of

(E—y) variables fromy to y/2 have been used. This result implies

Posel )= 1| 32

2 that the expansion given in E¢L6) can be simplified to
o2ty 1)ey-1 10 S
R y=3/: (10 2x1,=[00+ 3 CorlOn). (18)
n=
where® is the Heaviside function. Let the satbe defined
by The statg0,0) is identicat with the Jordan statf9,0);. The
_ N normalization of the initial state given by Eq4.2) and(18)
A={(xy)ly<z} (1) s accounted for by th{9,0) term alone since th@,n) states
and denote the characteristic function®iby 1,. Choose as each integrate over the unit square to Zewvhile we can
the initial probability density give an explicit expression for generation of the coefficients,
F(xy)=2X 1. (12) Con, their explicit values will not be required for the rest of

this discussion. Th¢0,n) states have a very nice propetty;
Clearly, this initial density has the value 2 in the lower half they are eigenstates of the Baker Frobenius-Perron operator,
of the unit (x,y)-square and the value 0 in the upper half andi.e.,
is normalized to unity. An application of the Baker
Frobenius-Perron operator, according to Bd)), produces a

1
density with four horizontal strips in the unik(y)-square, Peake O) = ?|O,n>. (19
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This is a very special case of a much more complicatedNow the distinction between the values 2 and O resides in the
formulat for the application ofPg. to general product third binary position. The first two binary positions in this
states|m,n) with m#0 that are not generally eigenstates. case are identical for values 2 and 0 and range over all pos-

Clearly, we now get sible () two digit binary expansions. It should now be
o 1 clear what happens as we continue to iterate the operator.
n X1,=10.0)+ c 0K). 20 After n iterations, the initiah binary digit segments will be
gake? X 1=10.0 kzl Ok2_”R| ) 20 identical for both values 2 and 0 and will exhaust tHe 2

possibilities, while then+ 1 binary digit will distinguish the
two cases, and all succeeding binary digits may have all
possible values. For finite but arbitrary a distinction re-
Limit PEae X 14=10,0), (21)  mains (in position n+1) that reflects the alternating strip
n—o structure of the graph of the function. However, in the infi-
and we have again obtained the entropy conundrum: the efite limit, all possible binary digit sequences occur for the

tropy of this limit is maximal with the value 0, whereas the Value 2 and all possible binary digit sequenats occur for
entropy of the initial state is—In(2), but the Baker the value 0. The function has the averaged value, 1, at every

Frobenius-Perron operator preserves the entropy! pointy in the unit interval; thus the function is equal to 1 on
What is happening here? For any finite valuengfthe the entire unit square. The limit expressed by E2{) is

state on the right-hand side of E@O) has a graph on the indeed obtained. ) S
unit square made up of"2! alternating horizontal strips A sequence{f,} of L functions is said to baveakly

1 B -
with values of 2 or 0 as was discussed above. It is easy t6onvergento anL= functionf if
verify that the entropy for any of these states-ifn(2), the

Limit f

wherein we have changed the summation index Eq. (18)
to k in this equation. It is now apparent that

invariant value corresponding with the initial value. Only in
the limit does the value of the entropy change discontinu- "~
ously to the value 0. To see how this comes about, we use @y |l L*g(y)’s.>® By studying the behavior for arbitrary

binary representation. Leb;bybs. .. denote a general bi- characteristic functionsgl, whereB is any measurable set in
nary representation of a numbgrin the unit interval. The  the unit square, in place of thgs, it is possible to prove that

1 1
dyfn(y)g(y)=J dyf(y)g(y), (26)
0 0

numbery is given explicitly by Eq. (21) is meaningful as weak convergence. In essence,
® b very fine alternating strips of 2's and 0’s integrated against a
y= E —:. (220 functiong yield the same result as integratiggagainst the
=2 constant 1.
where theb;’s are either 0 or 1. Thus, the function., has A sequence{f} of LP functions is said to betrongly
the value 2 for all binary representations expressible a§onvergento anLP function f if
.O0b,bsb, ... and the value O for all thosg expressible as | imit If,—fl=0, (27)
db,bsb,. .. whereb,,bs,b,, etc. may be either 1 or 0. We N
write this in the form )
wherein|-- || denotes the.! norm>® For the sequence of
%1 a 2, for .Obgbshy. .. 23 functions given in Eq.20) as thef,’s and for the limit
A710, for .1b,bgb, ... " function given in Eq(21) as thef, we find instead
Clearly, an application of the Baker Frobenius-Perron opera-  Limit|f,— f||=1. (28
tor produces n—oo
2, for .00bsb4bs . .. Thus, we do not have strong convergence.
2, for .10bzbsbs . .. Equation(21) is meaningful in the sense of weak con-
Peake?X1a=1 0, for .0lbsbsbs... [ - (24 vergence which means only when both sides are used inside
0: for .11bsb,bs . . . an integral. Weak convergence permits us to use the spectral

decomposition of the Frobenius-Perron operator in correla-
Notice that the distinction between the values 2 and 0 residegon functions where an integral is performed as part of the
in the second binary position as opposed to the first binargefinition of the correlation functio#®*® This makes the
position for Eq.(23). A second application of the operator decay of correlations manifest. The density does converge to

yields the invariant density, but only in the weak sense, so that the
(2, for .000,bsbs . .. ) limit of the entropy equals the _initial entropy, but is unequal
2, for .01(,bebs . .. to the entropy _of t.he Weak limit. 3
5 for 10b.b.b The behavior illuminated by the Baker map clarifies the
' ' 47556 - - Gibbs picture of the time evolution of a phase space distri-
P% 2 X 1a= 2, for .11(,bsbs . . . ) (25) bution for a classical mechanical system. Gibbs’ picture is
e 0, for .00lo4bsbs ... that any initial distribution evolves to an intricate, highly
0, for .011b,bsbs . .. filamentous structure that ultimately becomes dense on the
0, for .101b4bsbg . .. energy surface. But it does not literally become the Gibbs
| 0, for .111bsbsbg . .. | microcanonical ensemble that uniformly covers the energy
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