THE
Paysics oF FLUIDS

VoLuME 13, NUMBER 12

DECEMBER 1970

Contributions to Nonequilibrium Thermodynamics.
II. Fluctuation Theory for the Boltzmann Equation*

Ronawp Forrest Foxt
Department of Physics, University of California, Berkeley, California 94720
AND "
Georee E. UHLENBECK

The Rockefeller University, New York, New York 10021
(Received 9 April 1970)

The theory of the nonequilibrium phenomena in a dilute gas as described by the Boltzmann equation
is extended in order to also include the fluctuations of the distribution function of the molecules. It is
shown that in a first approximation this extension leads to the Landau-Lifshitz fluctuation terms in

the hydrodynamical equations.

I. INTRODUCTION

The theory of general stationary, Gaussian
Markov processes which was developed in Ref. 1
is applied to the fluctuation theory of a gas as
described by the Boltzmann equation. The result
is a Boltzmann equation with fluctuation terms
(Sec. II). An adaptation of the Enskog procedure
for deriving hydrodynamics from the Boltzmann
equation is presented and leads to a derivation
of the hydrodynamical equations with fluctuations®
(Secs. IIT and IV). Since both fluctuating hydro-
dynamics and the Boltzmann equation with
fluctuations are stationary Gaussian Markov pro-
cesses, their connection through the Enskog pro-
cedure suggests a general theorem for such processes.
This is discussed in Sec. V and leads to a general
criterion for the over-all consistency of the sta-
tionary Gaussian Markov process approach to
nonequilibrium thermodynamies.

II. FLUCTUATIONS IN i SPACE

The state of a dilute and monoatomic gas is
described by a distribution function f(r, p, £) which
gives the number of particles at time ¢ in the element
dr dp of the six-dimensional phase space (i1 space)
of a molecule. The change of f with time is governed

by the Boltzmann equation® and one shows that
for t — « f(r, p, ) approaches, if there are no
outside forces, the Maxwell equilibrium distribution:

2
— ~3/2 __p
feq(p) neq(27rkaTeq) exp( 2kaTeq> ’
where 7., is the equilibrium density, 7,, is the
equilibrium temperature, m is the mass of a molecule,
and kp is the Boltzmann constant. When f(r, p, f)
is near f.,(p), one can write

f(r) p,t) = feq(p)[]- + h(l', p, 1),

where A(r, p, ¢) fulfills the linearized Boltzmann
equation

Oh | Po Ok
at * m %,
= [ 1@ol(e, O + 1 — b — h)d2dp,. (O

The right-hand side of (1) describes the effect of
binary collisions on the change of A(r, p, {) with
time. The prime and the subscript 1 on the A’s
refer to its momentum variable p only. For instance
h{ means h(r, p{, t). The four momentum variables
refer to the binary collision (p, p,) = @’, p)); g is
the relative velocity which turns through the angle
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6 in the solid angle d@ during the collision and
I(g, 6) is the differential collision cross section,
which depends on the intermolecular force.

It will be shown that (1) may be rewritten such
that it has the form of the average regression
equations of a stationary Gaussian Markov process:

da;
dt

where 4;; = —A4;;,, S;; = 8;;, and S;; has non-
negative eigenvalues. In analogy with the treatment
of the hydrodynamical variables in Ref. 1, the
a;(t) in (2) for this case will be i(r, p, £). Therefore,
the summations over the repeated indices in (2)
correspond to integrations over the labels r and p.
After establishing the form (2) in this sense for
(1), fluctuations will be introduced transforming
the linearized Boltzmann equation into a generalized
Langevin equation.

First, we observe that the right-hand side of (1)
may be written in the form

+ Aga; = — 8,50, 2

~ [ Wt KE e @

as was shown by Hilbert* and Enskog® who also
proved that the kernel K(p, p’) is symmetric,
isotropie, and has nonnegative eigenvalues. From
the five conservation laws for a binary collision
it follows that K(p, p’) has five zero eigenvalues.
Not much is known about the eigenvalue spectrum
in general. For a repulsive intermolecular force
~r~% (Maxwell model) the spectrum is discrete
and goes to infinity.® For hard spheres the spectrum
begins with a discrete series which converges to
a continuous spectrum which extends to infinity.”
In the following we assume that the spectrum is
discrete. This is merely a formal convenience since
no specific properties of the spectrum beyond those
already mentioned will be used. Also we will not
be concerned with the convergence of eigenfunction
expansions so that they must be considered as
formal series.

Now define a(r, p, t), A(r, p; ', p’), and
S, p; ¢, p’) by

alt, p, t) = f22 (@G, p, V),

2 o a / ’
AG ;v ) = 120) B o s —r) s—p), (4

S@, p;r’, p') = L@ @)K, p) 8@ — 1),

then, using (3), one easily verifies that (1) can be
written in the form
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a%a(r, p, t) + ff dr’ dp’A(x, p;1’, p'lalt’, p't)

= —[[ @ dse, o, praw, 0. )

A(r, p; v, p’) is antisymmetric because of the factor
(3/8z,)8(x — r') and S(r, p; r'p’) is symmetric
with nonnegative eigenvalues because of the factor
K(p, p’). Therefore, thinking of r and p as labels,
the linearized Boltzmann equation (5) has the
same form as the average regression equations of
a stationary Gaussian Markov process of type (2).

The linearized Boltzmann equation gives a
contracted description of the behavior of a dilute
gas, since for a precise description the Liouville
equation would be required. Hence, A(r, p, t) must
be considered to fluctuate in time. The form (5)
of the linearized Boltzmann equation suggests
that the fluctuation may be described by adding
to the regression equation (5) a fluctuating force
term f22(p)C(r, p, t) which makes (5) a generalized
Langevin equation. Going back to A(r, p, f), one
then obtains, for the linearized Boltzmann equa-
tion with fluctuations,

Pa Oh

oh
ot + m 0x,

= — [ @K@, )k, v, ) + C, 8, 0. O

C(r, p, t) is assumed to have mean value zero and
to satisfy the correlation formula

(Cx,p, OCU 0, 1))
= 2Q(r,p; v, p)ét — t').  (7)

Q(r, p; ', p’) may be explicitly determined by
invoking the fluctuation-dissipation theorem [Ref. 1,
Eq. (29)] once the “‘entropy matrix”” E(r, p; ', p')
has been determined. ¥ follows from the expression
for the entropy of a dilute gas

SO =~k [[ drdp e, p, 0 e, p 0. ©®

Near equilibrium, replacing f by f (1 + A), and
expanding (8) up to second order in h, one obtains

S() = Sey — ks f f dr dpl:feq(p)h(r, D, 0

2

+ foo(p)R(x, P, t)(ln [neq(ZwkaTeq)‘sxz] _ sz;c BT)

+ HaoW, 2, 0
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with

Suu = —ks [[ drdp 1) In 1),

Since the total number of gas molecules and the
total kinetic energy are constants of the motion,
the terms linear in % vanish, so that with the defi-
nition (4) for a(r, p, t) one gets

SO = Su = 4o [[ drap e, n, 0 ©

from which one reads off that the entropy matrix E
is given by
E(w,p; v, p) = 8@ — r)ép — p).

Putting this in the fluctuation—dissipation theorem,
one finds that (7) becomes

(€, p, 00, p', 1))
= 2K(p, p")o(x — r')o(t — ¢).

(10)

(11

The results (6) and (11) can be put in another
form by introducing the eigenvalues \; (formally
assumed to be discrete) and eigenfunctions ¢,(p)
of the kernel K(p, p’). The ¢,’s are orthonormal
with respect to the weight function f,o(p)/7eq,
so that

[ ®, L we@e® =5, 02
K(p, p’) has the expansion
K@, p) = 2 \0.0) 13)
and expanding € one can write
O 0 = PG 060, ()

Because K(p, p’) has five zero eigenvalues, which
will be taken as the first five corresponding to
1 =1,2 ... 5, the expansions (13) and (14) become
sums from ¢ = 6 to ¢ = . For (13) this is obvious,
while for (14) it follows from (11), since (11) requires
that F.(r, &) = 0 for ¢ = 1, 2 --. 5. Finally, by
expanding A(r, p, t) in the form

®

h(!', P t) = ; ai(ri t)¢1(P) (15)
one easily shows that (6) becomes
J a
'(;; al(ry t) + fBlk.a 5;; a/k(r,7 t) dr,
= —Nafr, t) + Fl(r) 1), (16)
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where By, . is defined by

Buo = [ 0 o200, (D

and the fluctuating F, have average value zero
and satisfy

F.@r, OF. (', )

= N80 — r)8(t — t).  (18)

The form (16) of the Boltzmann equation with
fluctuations will be used in the following two
sections of this paper.

III. CONSISTENCY WITH FLUCTUATING
HYDRODYNAMICS

In Ref. 1 it was shown that the theory of hydro-
dynamical fluctuations leads to the Langevin
equation for the motion of a Brownian particle.
It is, therefore, of interest to see if the theory of
u-space fluctuations can give rise to the theory of
hydrodynamical fluctuations. We saw that for the
complete description of the gas in u space all the
funetions a,(r, f) are required, while for the theory
of hydrodynamical fluctuations only the five
hydrodynamical variables are needed. Note that
these five variables are related to the first five
coefficients a,(r, ¢) in the expansion (15) of A(r, p, £
and that these are associated with the five zero
eigenvalues of the kernel K(p, p’). One should
expect, therefore, that the first five of the a,(r, #)
will vary in time much slower than the other
a,(r, t), which is the reason why a contraction of
the deseription from u space to hydrodynamics is
possible. An unambiguous mathematical procedure
for effecting such a contraction was first developed
by Enskog,”® who used it for the derivation of
the Navier-Stokes equations from the Boltzmann
equation. We will use the same method to derive
the hydrodynamical fluctuations from the w-space
fluctuations.

We first note that the five zero-eigenvalue eigen-
functions of K(p, p’) are explicitly®

¢l(p) = 17 ¢a(P) = (kaTeq)~l/2 ay

3

2 (19
8@ = @010 (2 - Sr,,)-

To check the orthonormality conditions one needs
the integrals

1
f dp = fea@)Paps = MksTeq Bap,
eq

1 2
fdpn feq(p) 2p7,npapﬁ = %m(kBTeq)z 6aﬂ'
eq
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The five hydrodynamical variables: density, local
velocity, and local temperature, are defined in the
linearized regime by

tnfe, ) = nfe, ) = neo = [ dpfua@hee, p, 0,

netale, O = [ dpfua®) 22 e, p, 0,

3kpTeq
" An(r, f)

eq

$ks AT(r, ) +

1

L [ i Eohen 0, @)
where AT, t) = T(, t) — T.. Note that the
left-hand side of (20) is also (3/2n.,) Ap(r, t) where
Ap(r, t) is the deviation of the pressure from the
equilibrium value.

Following Enskog we now introduce a scaling
parameter § and expand A(r, p, ) formally in a
series in 1/6

h(l', p) t) = hD(r: P; t)
+ %hl(rr P, t) + 3}5 h2(r: p, t) + -

Similarly, the time derivative is formally expanded

d do 19, 14,

- atTea T Eat
Finally, we assume K(p, p’) to be of order 6 and
C(r, p, ) to be of order zero in §. Putting K = 6K,
then K is of order zero and has eigenvalues X; =
A:/8. Introducing these expansions in the linearized
Boltzmann equation with fluctuations (6) and
equating equal powers of 8, one obtains the set of
equations

f dp’E®@, p)f.a®@)holr, p’, 1) = 0,

Pe
( Tom 0z, )ho
= — [ &R @, 9)1.a@ e, 0, 0 + Ct, 2, 0, (22)

Pe 6) N
( + h‘+ath°

@n

m dx
= — [ @Re, )l te, 0, 0, (29
p. 9 ) AP
( Tm 9z, h2+6th1+6th°
= — [ @ R@, P)@Vate 0 0, @)

and so on!
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The solutions of these equations are obtained
by invoking solubility and uniqueness conditions
at each order of 1/8. The uniqueness conditions
are expressed by assuming that in the eigenfunction
expansions of the successive approximations h,(r, p, t)
only ho(r, p, {) contains the first five eigenfunctions
(19). Therefore if

ha(r, p, 1) = ; ar™ (t, H)¢.(p), (25)
then it is assumed that
a™(@,t) =0 for I=1,2-.--5 and n>0. (26)

That this leads to uniqueness of the solutions for
h.(r, p, t) will become evident as the computation
proceeds.

Clearly from (21) it follows that h, is a linear
combination of the first five eigenfunctions. There-
fore

5
ho(l', P, t) = 12: a;O)(ri t)¢z(P) (27)
=1
The uniqueness conditions (26) imply that the
hydrodynamical quantities (20) are determined
exclusively by ho(t, p, £). In fact, one easily obtains

o, ) = ng Anfr, 1),

o ( )1/2
i) = T 1),
(r, ) = o) )

a(r, 1) = ()T ATG, ).

In order to solve (22) one must impose the solubility
condition that the left-hand side is orthogonal to
the first five eigenfunctions since from our as-
sumptions it follows that the right-hand side is
orthogonal to these functions. This leads to the
conditions

% (0) <
at al (r7 t) + ,;Blk,u 6

(28)

" ) =0 (29
forl = 1,2 ... 5. The By, are defined by (17)
and can easily be calculated for I, k = 1,2 -+ 5.
Using (28) one then verifies that (29) are just the
linearized Euler hydrodynamical equations:

9y
51 An(, 1) + Meq 7 a u(r, ) =
mng, L u r,t) = (30)
eq at al\ly
nequ AT(I’ t) == equTeq a ‘I(r7 t)'

These equations may be viewed as defining the
zero-order time derivative d,/9f. Note that to this
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order of approximation the fluctuating forces
C(, p, t) do not contribute, corresponding to the
fact that the Euler equations do not contain any
dissipative effects. Finally, if the conditions (29)
are satisfied, then the uniqueness condition guar-
antees that (22) leads to a unique solution for
hi(r, p, £), and one finds, for the expansion co-
efficients,

EBH: ]

k=1

-4, 0)
@D

Trghi (Fl(r’ H=

for I > 5.
In this way one ean go on. The solubility con-
ditions for (23) become

_ZBlk 3

% oG, 1) = @) 6

forl = 1,2 --- 5. Substituting (31) into (32) gives
4 @
at a’ @, t)

_ 1 -] -] —1_ 2% ©

= 'Z_;Bu, X, B,;.s 9. 02 a; (r, %)

0 =~
oz, Fif, 1. (33)
For the case of spherically symmetric intermolecular
potentials, which is the case we always have in
mind, the ¢,(p) are either even or odd under the
reflection operation p <> —p’. From the definition
(17) of the B,;. . one then shows that'
1
Bii,a ');\—Blci.ﬁ =0 (39
k
unless ¢,(p) and ¢;{p) have the same parity under
p <« —p’. Keeping this in mind, and using the
following definitions:

m 1
ua w8 = g Z i_Bk”.ﬂ’
k=6 k (35)
= 1
Qaa = Z 7\— k5,89
{1} d
PaB (l', t) = —TIlag, 4 gx—u“(r’ t))
g (36)
(1)(1' t) —Qaﬂ 5_3_ AT(I', t);
B, 0 = (ksTu) § 3 Buss 3 e, 0,
(87

kT, 1 5
qfxl)(r) t) = (%)1/2 S ZBM.a N Fk(r; t))
(7] k=6 )‘k
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Eqgs. (33) can be written in the form
a‘ An(r f) =
M S uae, O = =05 PR + P, (39
Znequ AT(I' t) = — (qfxl) ~(l)),

ax,,

where we have again introduced the hydrodynamical
variables by (28). These equations can be looked
upon as defining the first-order time derivative
8,/8t. Combining (30) and (38) then gives the
hydrodynamical equations with fluctuations to
order 1/0. One gets

g Anfe, ) + neg —— a ualt, §) = 0,
Mtea 5 at
= (P %+ P, (39
niks 2 ATG, +neqk3nqa walt, §
@ + 4.

Finally using the correlation formula (18) for the
fluctuating forces F(r, ¢) from (37) one obtains
the correlation formula for the fluctuating stress
and heat flux in the form

(Pas@, HP (', 1)
= 2kpT., 6(t — t') 8(t — ') ,4,,,,
(¢, DE" @, 1)
= 2kpTo 8(t — ) 8@ — 1')Qup,
(Pas, g, 1)) = 0,
where II and @ are defined by (35). Except for the
explicit form of the stress tensor and heat flux in
terms of the transport coefficients, Eqs. (39) and
(40) have precisely the form of the Navier-Stokes
equations with fluctuations presented in Ref. 1.
In the next section we will show that for spherically
symmetric intermolecular potentials the con-
ventional form for P,; and ¢, follows from (36)
and that Eqgs. (40) reduce to the Landau-Lifshitz
correlation formula.
By continuing the Enskog procedure one obtains

the so-called higher order hydrodynamical equation
of which the second order was developed in detail

(40)
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by Burnett.'! With our adaptation of the Enskog
procedure one obtains, in second order, the linearized
Burnett equations with new fluctuation terms.
Since the method is straightforward, we only
present the results. Using the following list of
definitions:

- 1
-D a8 = m— ¥ T2
pa,vf neq02 gBuk,a (>\k)2 Blcy,ﬂ,
3k >
/7 _YUivB
af = o 2 zBska 2Bk5 2]
2
Negl ) (a1)
Q#a,B'y = _Ve: (2"”1]{/37"911)1/2
Meq
- 1 « 1
l;i X ;3 x:’ 15 v
P, o) = 1 —Qz——AT( t)
=8 T 9z, 9z,
a9
+ Daﬁvuva_ a; U1, If),
- (42)
(2)(1' t) qu af ax, a ;A(r t)
r 9 9
+ Daﬂ axﬁ at AT(r’ t))
(2) _ _(kaTeq)1/2 - <_1_§.0_
P, t) n.,q32 P B (Xk)z at Fur,
+L5h,, 2 Lhe),
Pt o, N (43)
~(2) _ §>1/2 kBTeq = < 1 9
da (x, t) (2 ?’teq92 Z%Bsk « (ch)2 ot Fi(r, 1)

one obtains for the second-order time demvatlves
of the hydrodynamical variables:

9, -
5t An(r, &) = 0,

a (‘2)
5 P + P,

Uet, ) = — & (44

a
Mg 5%

—’nequ AT(r )= —6— (qm + ¢,

Added to the zeroth- and first-order results (30)
and (38) this leads to the linearized Burnett equa-
tions with fluctuations. For the second-order
fluctuation terms (43) one finds the correlation

formula
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(P, @, 1)
= =2k 8 — V) Qs 5o B — 1),
PR, 042, 1)

= —2kBTeq 6(t - t’)Qaﬂ a7 6(1- ’))

"o (45)

P, yPI @, )
= —2kpT., 6t — 1') Dos at’ ot — t,
(@0, HE~ @, i)

= —2kpT%, 6@ — t') Dig -5 8(t — ).

aB 8 t
Note that in the definitions (42) and (43) of the
second-order quantities and in (45) the zeroth-
order time derivative 8,/9f appears. Where it
acts on the hydrodynamieal variables directly as
in (42), one can express the results in space de-
rivatives by using the definitions (30). In the
fluctuation terms, which are fluctuating forces,
(30) should be used after their effect on the hydro-
dynamical variables has been made explicit.”*

Finally one should point out that, while the
first-order or Navier-Stokes equations with flue-
tuations are an example of a stationary Gaussian
Markov process as shown in Ref. 1, the second-
order or Burnett equations with fluctuations do
not fit into the same general framework. This is
most readily observed by noting that for instance
@@ @, g¥ (', t')) does not correspond to any
dissipative constant of the average Burnett equa-
tions since it must contribute to the equations of
the next order in 1/6.

IV. FURTHER SIMPLIFICATIONS FOR SPHERI-
CALLY SYMMETRIC POTENTIALS

Since for a spherically symmetric intermolecular
potential the kernel K(p, p’) is isotropic, one knows
that the eigenfunctions ¢,(p) are the product of
a radial function of p and a spherical harmonic
in the angles defining the direction of p. Instead
of spherical harmonics it is more convenient to
use spherical tensors in p since these exhibit more
clearly the tensorial properties of the quantities
I,, g Qa.s Which we want to calculate. We, there-
fore, make the replacement

Pui) (46)

where 7, | depend on k and (p,, -*- p..) is a com-
pletely symmetric and homogeneous polynomial

@) = R.@p ' Pupu.
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of degree ! in the p, for which, in addition, all
possible traces are zero. Examples are

(pllpv> (47)
- %PZ(Pa 657 +pﬂ 50:1 +'p1 6049)-

= PPy — %Pz 5#»1

(DaPeDy) = DuDsDy

In the notation of (46) the five zero-eigenvalue
eigenfunctions become

é.(p) — Roo(p) = 1,
¢.(p) —’Rm(P)p_lPa: R, = p('kaTeq)_l/z,

2

&s(p) — Rio(p) = (%)1/2(’93Teq)_1<2£77—1, -

(48)
g kBTeq) *
One now must compute the B,; ., Bs;.., and By,

for j, k& > 6. From the definition (17), using (47)
and (48) one can write

(kaTeq)_l/2
MNeq

: f P [P Pp2) + 30° 6,.16,D).

Bw‘.a =

Since p®5,./3 is a linear combination of ¢;(p) and
¢5(p), it makes no contribution to the integral if
j 2 6. Also if one writes ¢,(p) in the form (46),
only I = 2 contributes, so that one obtains

(’”’IJ{:BTYQCI)-‘I/_2
MNeq

[ @b fu @R 2 pupa),  @9)

B“]A La =

where the index j corresponds to 7, g, p,.
Similarly, one finds for j > 6

Bﬁi.u = (%)1/2(2m2nequTeq)ﬁl fdp feq(p)er(p)ppapw
(50)

where the index j now corresponds to r, u. The
general B;, , term for j, k > 6 is only needed for
the computation of Q,, 4, and from the definition
(41) it may be seen that this requires only the
spherical tensor of order 2 in ¢;(p) and of order 1
in ¢,(p) because of (49) and (50). For these values
one can write

Bit.e = yon= | 8 LR @R @072 p2i2., 5

where the indices j, k correspond to 7, u,, u, and
s, », respectively.
Using the following integral theorems:

2887

[ @0 1o P o2 0.0
= 75(8:a 8, + 85 80 —

. f dp f.(0)p'F (D),

% 6-‘1’ 3,,3)

[ @ 1 F @0, = 3 b [ dp 1o D)

which hold for any scalar function F(p), the in-
tegrals (49), (50), and (51) become

— (kaTeq)—l/zf 2
Bui.u - 15mneq dp fEQ(p)p sz(p)
'(6;:»: auue + 5#;:: 6au; - % aau 6;&::4-)7
Biio = B 6mndiT)™ [ dp 1P R(p) b
Bin = T | 0 1P0R0Rp)
'(5au, 5,”, + 6"#: 6vu: - % 6” 6#::4;)'

Using these expressions and the following ab-
breviations:

kB e —-1/2 .
N,, = % f dp feq(P)P er(P);
Nu = @ 6mnkaT) " [ do 1o Rato),
Newo = o | 80 1u@PRA@Ra) (52

the basic tensors (35) and (41) can be written in
the form

©

Hua,uﬁ = 2m Z (Nf2)
=0 >‘r2
'(5y.v suﬂ + 5”@ 5»0 - % 6ua 6vﬂ)’ (53)
— 1
Qaﬂ - %kﬂ Zl A L (er)2 50181 (54)
2m (1 2
Dua,vﬁ h neq 7;0 ()\,‘2 NrZ)
'(auv Baﬂ + 6;18 6va - % 6#0[ 673)7 (55)
3ks < ( >2
{z = r a; 56
# 2n’e qr=1 rl ! f ( )
Qua'ﬂ*r o (2kaTeq)1/2 Z Z r2NslNr2,ll
r=0 s=1 r2)\al
'(5a8 5:47 + 6117 5148 - 3 5au 567)’ (57)
where we have put in evidence the dependence

of the eigenvalues )\, on the indices » and { of the
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eigenfunctions in the form (46). Note that (53)
and (54) have preeisely the same tensor form
obtained for fluctuating hydrodynamics as in
Ref. 1.

For the special case of the Maxwell model (inter-
molecular potential k/r*) the results can be sim-
plified further since all the eigenvalues A,; and
eigenfunctions are known. In this case the radial
part of the eigenfunctions will be denoted by M, (p)
instead of R,,(p). They are polynomials in p of
degree 2r 4 [; those corresponding to the zero
eigenvalues are, of course, the same as in the general
case [see (48)]; the explicit form for the first two
positive eigenvalues A;, and A, are

Mll(p) = (%)1/2(2kaTeq)—3/zp(p2 - 5kaTeq)7
Mos(p) = 2'*QmksT.) "p.

For the same value of [ the M,; are an orthogonal
set in 7. Using (58), this gives, for the quantities
N in (52),

ksTe)”* <5k T g>““’
= [ZBLea . —_ Bl e
er ( 2m ) 5r0y er 3m 671:

k Te 1/2 .
er,n = (ﬁ) 80 041

Substituting in Egs. (563)-(57) and replacing X,,
by (2k/m)'/*A,, in order to connect with the dimen-
sionless eigenvalues given in the literature,’ one
obtains, for the numerical coefficients in the tensors
(53)—(57), the values

(58)

1/2 - 2 1/2
7= kBTeq<1"—) Lo o ikl (ﬂ) L
2k Moz 2 m \2k A
D = kT (Ln_) 1. 5k (m) 1
Neq \2k/ N5y’ 2 mn., \2k/ A%,
and

Q — (kl?qweq)2 <1n_> 1 .
MTeq 2k/ Nozhiy

Note that since for Maxwell molecules A;; = %Ags
all the coeflicients can be expressed in 7. As a result
one can write, using the definitions (36) and (42),
the average stress tensor and heat flux up to the
Burnett approximation in the form

U, au, 2 ou
Paa=P5aﬁ_ﬂ<W"—+*’£_— “)

oxs | 0z, 3 °°" 9z,
3’ ( 9’ 1 )
+ mneqTeq ax,, axﬁ 3 Baﬁ A AT(I" t)
e \0z, 05, 3 S 8) APE, D), (59)
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_ _15ks oT ;5_172_( 10 ai)
T« = Ty 7 9o + 2 mn., Aue + 3 0z, 0z,
_15 9" 9 du, (60)

4 mn. dr, dx,’

where Eqgs. (30) have been used to eliminate the
terms containing d,/0f. These results agree with
those obtained by Wang Chang.™

V. AN INTERNAL CONSISTENCY THEOREM

In Ref. 1 the general mathematical formalism
for stationary Gaussian Markov processes was
presented and it was shown that the linearized
Navier-Stokes equations with fluetuations is an
example of such a process. In this paper the linearized
Boltzmann equation with fluctuations was shown
to be another example. Moreover, an adaptation
of the Enskog contraction procedure up to second
order in the scaling parameter 6, permitted a
derivation of the fluctuating hydrodynamical equa-
tions from the fluctuating Boltzmann equation.
An entirely analogous contraction may be performed
on the fluctuating hydrodynamical equations and
to second order the result is a diffusion equation
for the density n(r, t) with fluctuations, which is
again a stationary Gaussian Markov process. This
suggests a general theorem to the effect that the
second-order approximation obtained through ap-
plication of the Enskog contraction procedure
always results in a stationary Gaussian Markov
process when the initial process is also such a
process.

To prove this theorem we will adopt the discrete
formalization of stationary Gaussian Markov pro-
cesses as presented in Ref. 1. It was shown there
that, in general, such processes are described by
the generalized Langevin equation

dai . 73
di + A0, = Sia; + F,

where A,; is antisymmetric, S;; is symmetric with
nonnegative eigenvalues, and the F; have mean
value zero and are purely random with correlations

<Fi(t)ﬁi(8)> = (G + E3G) 8(t — 9),

where G;; = A,;; + S;; and E; is a real, symmetric,
and positive definite matrix, which is determined
by the first probability distribution function for
the process

Wi(a) = W, exp (—3a.E,;a;).

In the examples already presented E.; is the entropy
matrix.
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From the properties of E;; it is easy to show
that one can find linear combinations a} of the a;
for which the first distribution function becomes

Wi(a') = W, exp (—3aiaf)
and the Langevin equations
da! ,
dt = Ghaf + Y,

where the matrix G; has the same eigenvalues
as Gy, 5o that it may also be written as G/ =
A’ 4 8’ where A’ is antisymmetric and S’ symmetric
with nonnegative eigenvalues. Furthermore, the
F7 are linear combinations of the original F, with
the correlations

(FiOFi(s) =

Finally, the matrix S’ may be diagonalized by a
unitary transformation and this leads to the follow-
ing form for the Langevin equation:

da¥’
dt

where A’/ is antisymmetric and the A’ > 0. The
F1’ are again purely random with mean value zero
and with the correlations

(FrOFrE) = 2N 6y 8(t — 9).

287, 8(t — s).

+ Ala}’ = =\l + FY, (61)

(62)

Equations (61) and (62) are taken as the canonical
form for an arbitrary stationary Gaussian Markov
process. In the following the double primes will
be omitted.

When some of the \; are zero, a contraction of
the stationary Gaussian Markov process (61)
becomes possible. Suppose the first n of the A;
are zero. Greek indices will be used to indicate
the special values of the Latin indices which are
<n. We again adopt the Enskog contraction pro-
cedure by introducing a scaling parameter 8. The
a; are expanded as

o = a.(.o) + (1) + (_2) 4o (63)
Let \, = 6Xx; and assume Xi to be of order zero
in 8. The F, are also taken to be of order zero.
The time derivative is formally expanded as

4 by 1d, L

dt edt " 6" dt
Substituting (63) and (64) in (61) and equating
equal powers of 8 leads to the series of equations

(65)

SH (64)

X.'agm = 0,

2889
3; (0) + A”a(o) = —X;agl) + F{, (66)
dy a® al® W _ 5 (@
Do + Lol + Al = —Ral, @D

and so on. The solution of (65) is ¢! for & =
1,2 -.- nsince X, = 0 and a{” = 0 fori > n
since X; # 0 for ¢ > n. From (62) it is seen that
F,=0fora =1,2--- n Therefore, the solubility
conditions for (66) are '

o

TR al 4+ A0 = 0. (68)
The solution of (66) is unique if we impose the
condition a{’ = 0 for « = 1, 2 .- n, and one
obtains
a = (A,., & —F) (69)
forall 7 > n.
The solubility conditions for (67) are
dl (0) (n __
dt + Aou a; - 0
which becomes, by substituting (69),
d 1
d_ltafxo) = 14‘”x A,ﬁ éﬂ)_ Aai—y_\‘iﬁi' T (70)

Combining (68) and (70), one obtains, up to order
1/6 in the time derivative, the contracted Langevin
equation

d

5a a® + A0 =

_Aza 3 A:ﬁ A;O) + A1a'_jﬁi
(71)

for the variables a!”. It is easy to show that the
matrix

1

Sa,g = 'X"

Aja = Ajp (72)
is symmetric and has nonnegative eigenvalues
because A is antisymmetric. Note that the sums
over j indicated by the repeated indices in (71)
and (72) always go from j = n 4+ 1 to j =  for
which A; > 0. Note also that the new fluctuating
forces F! defined by

’ 15
Fa=A;urF:' (73)
have mean value zero, are purely random, and
satisfy

(FLOF}s)) = 28,480 — ), (74)
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where (62) was used. Consequently, the contracted
equations (71) and (74) again describe a stationary
Gaussian Markov process, as was suggested in the
beginning of this section.
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