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Generalized coherent states
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Generalized coherent states are constructed for the Coulomb problem. Following a construction procedure
proposed by KlaudefrJ. Phys. A29, L293 (1996], Rydberg atom coherent states are defined and analyzed.
The relationship between decorrelation in time and delocalization in space is elucidated. Keplerian orbits are
discussed. The connection with sharp Gaussian wave packets used to explain pump-probe experiments is made.
This is achieved by introducing genuine Gaussian Klauder coherent states that are overcomplete, and permit a
resolution of the identity operator. They decorrelate comparatively slowly, and remain spatially localized for
many Keplerian period$S1050-29479)05605-X

PACS numbes): 03.65—w

I. INTRODUCTION and Sharatchandrgt]. Section IV is separated into seven
subsections. Section IV D contains a quantum-mechanical
Ever since Schidinger[1] introduced coherent states for derivation of Kepler’s third law for circular Rydberg coher-
the harmonic oscillator, attempts to generalize this idea havent states. Section V deals with temporal decorrelation and
been made. The 62‘) genera"zed coherent Sta@ are an the criticisms of Bellomo and StrOL[(5,6]. Finally, Sec. VI
especially nice example of a successful extension of the cgiontains our construction of genuine Gaussian generalized
herent state idea. More challenging has been the objective gpherent states and natural generalizations of them. Section
obtaining generalized coherent states for the Coulomb poter)! could be read directly after Secs. |, I, and llI, since the
tial problem, as was originally proposed by Safirger[1].  intervening sections essentially provide motivation and con-
Recently, significant progress has been made in this directiofgXt only.
[3,4]. Nevertheless, criticism of this approach has been
raised[5,6]. It was motivated by comparison with experi- 1I. HARMONIC OSCILLATOR AND su (2) COHERENT
ment using a pump-probe technique to detect the periodic STATES
return of a wave packet to a nucleus along an elliptical orbit
[7,8]. These experiments have been refif@d11] and decay
and revival have been observed as well as fractional revivals. . )
Gaussian wave packdi$2-14 have successfully accounted stateg6,¢) [2]. The h?‘fmoﬂ'c'osc"'ato" coherent stad for
for these fascinating observations. Gaussian wave packet€oMPIex paramete is defined by
per se are not generalized coherent states and lack the prop- o1 @ N
erty of resolution of the identity operator that is so useful for )= exr{ _ ﬁ} E * In) )
genuine coherent statd®]. The Majumdar-Sharatchandra 2 |i=o \/ﬁ ’
[4] states for the hydrogen atom do have a Gaussian approxi-
mation (see Sec. IV D belowfor a large principal quantum where |n) denotes an eigenstate of the harmonic-oscillator
number, but its variance is predetermined by the structure dflamiltonian, and the sum is over integes. These states
these states and is much larger than foradehocGaussian are normalized
wave packet$12—-14 that are consistent with experimental
observations. The purpose of the present paper is to present (ala)y=1, 2
genuine Gaussian generalized coherent states, and to critique
the recent literature. These states allow a resolution of thBecause
identity operator and can have very small variances for se- .
lected operators. They should prove useful in contexts other 2 Ial2n
n=0

The paradigms for generalized coherent states are the
glarmonic-oscillator coherent staf@$ and the s(2) coherent

=exd|a|?], )

than the present, such as for quantum-classical correspon- n!

dence theory via Husimi-Wigner distributionE5—17 semi-

ﬂ%sgi((]?m theory[18], and wavelets for signal processing and they provide a resolution of the identity operator:
This paper is organized as follows. In Sec. Il, a review of 1 *

coherent states for the harmonic oscillator and of generalized —f d?a|a)(al= 2, |n)(n|=1 (4)

coherent states for angular momentum is presented. In Sec. m n=0

[, Klauder’'s construction of generalized coherent states for

Hamiltonians with discrete spectra is given. Section IV, theP?®cause

longest section of the paper, is devoted to Rydberg atom . on

poherent sta_tes, in acco_rd with Klaut_jer's _construcmjr_but Zf rdr exd — r2] r_| =1 (5)
in parallel with the particular rendering given by Majumdar n
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for all n wherea=r exdi¢]. If H is the harmonic-oscillator
Hamiltonian, then

i
9X4‘—%7Ht

|ay=exd —iot/2]|ae” ')

(6)

which exhibits Klauder’'s definition of “temporal stability”
[3]. The su2) generalized coherent statgse) are defined
by [2,17,21

=exf —iot/2]|re'(®~ V),

1
|j,e,¢>=exp[ieg(sirm(cmx—cow)ay)}u,J>

.0

=ex;{ - %(JJre“‘f’—J_e‘q’)
2j gipd '
pZo Fco@‘p( 6)sinP(0)
(2))tpr \ 2
W) =P,

wherej,m) denotes an eigenstate & andJ, for the sy2)

(@)

algebra of angular momentum operators. These operators

satisfy the commutation identities
[Ji ,Jj]:iﬁsiijk, (8)
9

is completely antisymmet-

[J,,d.]=*hd., [J;:,]_]=24J,

, and wheres'¥

for J.=J,*iJ,
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H|n)=E,|n)=%we,|n), (15

so that thee,’s are dimensionless for some energy sdale

and wherein for definitenesg<e;<e,<---. We define the
generalized Klauder coherent state by
= SQ
INg, oy =(N(ng)) Y23, ——=e'en?o|n), (16)
n=0 ypn

in which —eo<¢y<oe. The parameterg,, are moments of a
positive weight functiorK(ngy) such that

(o)n

ric and repeated indices are summed. These states are nor-

malized
(0,4]0,¢)=1, (10)
and provide a resolution of the identity operator:
ﬂf dQ[6,$)(0,¢|=1, 11
4

whered() is differential solid angle. They are localized for
largej in the sense that

(0,4|3,16,¢)=1] cog0),
¢ sin(g),

(12

13

1 ) - 1
ﬁz—j2[<9,¢|3 |10,6)—(0,01J]6.6) ]=j—- (14)

Thus |6,¢) points in the direction ofﬁkcos(&)ﬂ? cos(@)

+]sin(¢)) sin(#) with a ratio of its standard deviation to its
average that vanishes with increasjniike 1/\/j.

Ill. KLAUDER COHERENT STATES

Klauder's construction of generalized coherent staBs

Pn:f d ON(n ) 0! (17)
N(ng) is the normalization factor satisfying
N(ng)= 2 — (18)
n=0 Pn
This guarantees that
(ng, ol No, oy =1. (19
The resolution of the identity operator is given by
® 1
dr‘oK(no) lim ﬁf debolng, $o){No, ol
[
K<n0> no "
dn —|n){n|= ny{n|=
J ON(n) n|><| nZO|><|
(20)
because
N
q[ITw 20 f—@d%el(en o= Onn @)

One natural choice of weight functidr3] K(ng) is K(ng)
=1 for which p,=n!. In this case,N(ng)=e€", and we
have precisely the Poisson coefficients used in the harmonic
oscillator coherent states of E).

Notice that the extension of th¢, domain from[ —, 7]
to (—oo,) is essential for the resolution of the identity op-
erator because it is required for the identity of E2{). This

for Hamiltonians with discrete spectra may be represented as a key step in the Klauder construction. In order to obtain

follows. Let the HamiltonianH have eigenstates and
eigenenergies satisfying

Gaussian generalized coherent states békee Sec. V)| a
similar extension will be required for th&, domain.
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IV. RYDBERG ATOM COHERENT STATES

1
Nop= 7 —JLZ+ K%+ 42 (27

In this section, a detailed account of Pauli'3xsu2)
algebra[22] for the quantum Coulomb problem is given. It
produces the Klauder states for Rydberg atoms in the for
given by Mujumdar and Sharatchandrd. The special case
of circular orbits is elucidated, and Kepler’s third law is de-
rived quantum mechanically. This is followed by a study ofin which |n,l,m denotes a standard Rydberg atom state of the
dephasing in the azimuthal angle. These results enable us form
critique the recent criticisms of Bellomo and Strol&]6].

The critique is presented in Sec. V. In,l,m)=Ry(N)Y["(6, ), (29)

rﬁmd has the property
(28)

in which the spherical harmonics have the standard f@4h

A. Pauli's algebra and the radial functions are the standard hydrogenlike func-

A Rydberg atom is described by the Hamiltonian tions[25] for Z+# 1.
0 7& The operators. andK satisfy the commutation relations
“omg 1 22 [LiLyl=ifietvL,, (30
angular momentum [K; K1=ifig"*L,, (31
L=Fxp, (23) [L; K]I=ife' Ky, (32)
and eccentricity vectofalso called the Runge-Lenz vector [L2,L;]=[K?L;]=0,
[23)) (33
[L2+K2,K]=0=[Ngp,Li]=[Nep.Ki]=0.
N 1 o Poa e Q0o =
=T 27e&m, (PXL-LXp)=F——(V+ra, V- Fv2), Using the well-known formulas

(24 L,=—i%d, (34)

which is rendered in spherical polar coordinates for later us
Instead ofe, we will use a renormalized variant defined by

. [ (Z€)%m,
Kz(_2|E|

"™ ~==*hexgd*i¢g](d,xicotan(6)d,), (35

E=hNyeE, (29 the well-known matrix element formulas follow:

<n,,|,,m,|LZ|n,|,m>:5n/n5|/|5m/mﬁm, (36)

whereE is the Rydberg atom energy given by
(Z2€?)°mq (n’,I”,m’|L.|n,I,m)

E:_Zﬁz(nop)zy (26) :5n’n5I’I5m’mt1h\/(|:m)(|im"'l)- (37)

in which the number operator appears and is defined by These are paralleled by the following formulas:

ag _ cog6) [ L?
KZ:ﬁnop(cos 0)+ - (cog 6)+sin(0)dy)d, + T( — ﬁ) D (38
_ ... Qg i sin(@) [ L2
K+:hnop(sm(0)e—'¢+z (sm(e) cog 6)dpF —— n(e) ) T(_h_z”) (39
o B (n2=13) (1 =m)(I1 +m)\ 2 (= (1+1)A)(I—m+1)(1+m+1)| 12
<n 'I M |Kz|nv|1m>__5n’n5m’mh[5l’l1( (2|+1)(2|_1) ) |’|+l< (2|+1)(2|+3) :|1
(40)
M=+ +m+2)(I=m+1)\*2
<n"|"m/|K+|n1|1m>:5n’n5m’m+1ﬁ{iél’l+l( (2|+1)(2|+3)
_ (N?=1)(IFm)(I¥m=-1)| "2
+ i 1( @I+ 1)(2- ) } 4
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Equations(36) and (37) imply Since
(n",1”,m'|L2|n,1,my= 8,06, Sy 2L (1+1), (42 o
and Eqs(40) and(41) imply M*=N*=(M+N)-(M—N)=L-K=0, (49
(01 (K21 = 8,8y S i 22— (12414 1)), the eigenstates ofl and N are labeled byljy,my) and

(43) lin,Mn), respectively, withjy=jy=]j. The last equality in
Eq. (49 follows directly from the differential operator rep-

Together, these identities imply resentations of andK. While the eigenstates &f? andL
depend only on the angleésand ¢, the eigenstates ¢f? and
(n' 17, m’ |(L2+ K2+ #2)[n,1,m)= 8,161 S w202, K, depend o as well. Thus we may express the states for

(44)  the Rydberg atom as product stafd$

which justifies Eqs(27) and (28). ,
- S j
Introduce operator® andN defined by[23 . . .
p y23] Lmlimy=3, G 2j 1 my+my), (50
M=%1(L+K) and N=i(L-K). (45)
. . . in which the right-hand side gives the Clebsch-Gordon ex-
These operators satisfy the commutation relations of the abansjon in terms of the Rydberg states of E2§). The fact
gebra s(@)Xsu2): that these Rydberg states all have principal quantum number
2j+1 follows from the operaton,,. According to Eq(28),

[Mi!M]]:iﬁsijkMk! (46)
y n2J2j+1),my+my)=(2j+1)%2j+1),my+my),
[N; N, ] =i %N, 47 onl 2 m+my) =(2j+1)%2j M N>(51)
[M;,N;]=0. (480  whereas, according to EqR7), (45), and(48)

205 o\ T T NTERE L 2 N K2 221 e [
n0p|J’mM>|]va>:ﬁZ(L +K+7h )|l'mM>|J,mN>:gZ((M+N) +(M=N)?+72)[j,my)[j,my)

= 72 (2M2H2N2+ 42 J,my) .my) = 2] (+ 1)+ 2 (] + 1)+ 1)[] my)| . my)

:(2j+1)2|j=mM>|jva>' (52)
|
B. Highest weight and Helgason’s identity From Eq.(45), it follows that
In order to construct coherent states, we follow the pro- S o
cedure used to generate generalized?)saoherent states Lo lji)li.j)=0 and K.|j,j)j.j)=0 (56)
[17]. This requires obtaining the “highest weight” state,
which we now prove is given by and
D) =12]+1.2,2)). (53 LAl i) =2Rjl5,0)i.0)
In su2)Xsu2), the highest weight state satisfies and (57)
M.[i.i)li,i)=0 and N.|j,j)j.j)=0 (54 Keli.i)li.i)=0.
and The four conditions of Eqg56) and (57) imply that
M iDL =%l D0 L) =12]+1.2,2j). (58)
and (55  The proof of this assertion involves explicit calculation using

the differential forms in Eqs(34), (35), (38), and(39) and
NL|j i) =%jli.0)i.0)- the functional form23—-25
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2j+3/2 1 2 Zr
ei+na22)r PN 2 Da,

4

ol sirfl(9)e'?¢. (59
do

12j+1,2),2))=

N

For fixedj, we may construct a coherent state factor using Helgason's id¢h#t26 to expand the generator:

1 1
TRCYRCIYIY 1¢N>:ex+ aMz(Sin¢MMx_COS¢MMy) ex;{i eNz(SinﬁbNNx_CosﬁﬁNNy)}“aj>|j,j>

Om i - On i - o
=exr{—ﬁ(l\/l+e Pu—M _e'?m) exu{—%(me IN=N_e'N)|[10)]i.0)

2 21 Gipgmtiaey

=2 0Wcos’-i*P(0M)co§i*q(oN)sinp(eM)sinq(aN)
p=0g= ‘4

p)|j.ji—a). (60)

( (2j)!p!(2))!q! )1’2. .
(2j=p) (2] —q)!
Equation(50) can be used to convert the ket outer product in the last line of@®g. but this requires application of the Racah

formula [27] for the construction of the Clebsch-Gordon coefficients which are not otherwise given in closed form. An
alternative construction utilizes the properties of the operaMrs, N_, L_, andK_. From

M_[j,my) =% (j +my)(j—my+1)]j,my—1), (612)
it follows that

(2!

2
M), )= ﬁ((zj k).) =K, (62

and similarly forN_ . Therefore[recall Eq.(48)],

j-p)!(2j-g!|* o
1=l | g o | MENTLDILD. 3
Equations(30), (31), and(32) imply
[L_,K_]=0. (64)

Using Eq.(45), we may convert the right-hand side of E§3) into

Bi-olii—a= @ji-pleji-aH\ g p! i q!
PIZPALI == Gnyeral "2t 2iigt | & al(p-a)! =ob'(q bt

(—1)dLPFa-a=bkatbioi g o 2j).

(65
The actions ol._ andK _ are given by Eqs(37) and(41), respectively. By inspection of these formulas, it is clear that the
equality of them components, i.ej,—p+j—q=2j—p—q, is guaranteed, and is consistent with Eg[).

Following Klauder's lead3,4] for thej sum, we obtain the Rydberg coherent state have scaled the phagg slightly
differently than in Sec. Ill in anticipation of Kepler’s third law belpw

No

exp[. Z°R, tﬁ 2 exfip gy +iqen]
R+ 12| & plq!

) . Nodo
|Ryd,ng, ¢ ,t)= 2 eXF{ \/W X4|2(2j+1)2

O 0N\ [ Om 2i)pl(2))qg! \¥2 .
xcost p( 2)"052' q( ZN)S'”p( 2) '”q( )((éjj p?!(zj 2)!) i=plii=ay. (9
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in which thej sum is overhalf-integervalues ofj, and the 3 I
terminal ket product may be replaced by standard Rydberg (Rydino, o tIKIRyd o, bo,t) = (o nN))’(m)
atom|n,l,m) states in accord with the Clebsch-Gordon expan-
sion in Eq.(50), or by the method of EQ65). Thej coeffi-  (Rydn,, ¢o,t|e2Ryd,ng, o, t)
cients must satisfy two roles simultaneoufB}. They must
guarantee normalization dRyd,ng,¢q,t), and provide a 1
resolution of the identity operator for the Hilbert space of = n—(l+(7— 1)e~"0o—Ei(ng)e~"o+In(ny)e "o
bound stateq3,4]. The time evolution operator for the 0
Hamiltonian of Eq.(22) evolves the statdRyd,ng, o) +(1—fy-fpy)[Ng—2+(2—y)e
=|Ryd,ng, ¢0,0) into |Ryd,ng, do+20t/n3) . . .
=|Ryd,no, ¢bo.t), whereQ=2?R, /%, and Ryd is the Ryd- +Ei(ng)e "—In(ng)e""]), (71
berg constant. R
<Ryd1n01¢01t|8|Ryd1n01¢01t>
C. Properties of Rydberg atom coherent states 1 1
The following expectation values are exact consequences = ((5— 2—%(1— exf — no])) (Apm— ﬁN)), (72

of Eq. (66), albeit after considerable computation:

2 in which Ay, andfy are radial unit vectors given in terms of
(Rydino, o, t|L¥Rydno. o 1) 6y and ¢y, and gy and ¢y, respectively. Equationd0) and
:ﬁz(%(n0+n§)+no+ %(n0+ng)ﬁM Ay (72) differ by more than a factor ofn,, because Eqg$25),

(26), and(28) imply that thej sum in Eq.(66) is affected. In
(67)  Eq.(71), y is the Euler constant, and Ei is the exponential

) integral function given by
(Ryd,ng, ¢o,t|K?|Ryd,ng, by, t)

=h2E (ng+n2)+ng— 3 (ng+n3)fy-Ny), o 7
(2(no+Ng) +No—z(No+Ng)hy - Aiy) Ei(z)= y+In(z)+ >,

(68) = 7

. for positive z
(Ryd,ng, ¢, t|LIRyd,ng, o, t) =% (3 np(Ny +iy)), To obtain these results, we have repeatedly used the fun-
(69) damental identity

G =gl =P ((M=N) [, j—p)lii—a)
=8, i—a'Kii—p |(M=N)[j,i—p)li.i—a)

- . . N fi : h :
= 5]’]( k5p/p5q/qﬁ(j - pi(] _q))+| 5p’p715q'q§ \/p(ZJ - p+ 1)i 5p/p5q/q,li \ q(2] _q+ 1)

h o — o
+5p’p+15q’q§ \/(zl_p)(p"_l)iép’p‘sq’qulE (ZJ—Q)(Q+1)

+]

A fi i ) :
5p,p,15q,q5 Vp(2j—p+1)* 5""’5‘”’15 Vvaq(2j—qgq+1)

. (74)

h— o
_5p’p+15q’qz V(zl_p)(p+1)15p’p5q’q+1§ (2j—q)(g+1)

In performing thep andq sums, care must be taken with the 2j (2j)! _

limits of the summations since, for exampt#, ,_ requires > (j—p) 3 — x2P=j(1—-x?)(1+x?)2 "1,
that p=1, so thatp’ is not less than zero. After carefully p=0 (2j—p)'p!

adjusting the limits and shifting the indices appropriately, we (76)

then use two identitief26] to finish the computations:
We may choose to have the conserved angular momentum

. along thez axis and the conserved eccentricity vector along

LXZpZZ'(l_’_XZ)Zj—l (75 thexaxis. It is straightforward to show that this can be
i—p)lp! J ' ; ;

(2j—p)!p! achieved by setting

2j-1

> (2j-p)
p=0
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6M:6N:g and d)M:O and ¢N:7T!

using(---) to denote the Rydberg coherent state expectation

value, from Eqs(67)—(72) we obtain
<I:>=hn0 cog )k,
(K)y=tingsin(0)i,
1 —
(5):(1— —(1—e“0))sin(0)i,
No
(L2 =#2ny(1+ (1+ng)co(6)),

(K2 =#2no(1+ (1+ng)sir’(6)),

GENERALIZED COHERENT STATES

(77

(79

(79

(80

(81)

(82

3247
(%)= nio(l— e~ o) —co( 9)

><i(Ei(ﬂo) —y—In(ng))e "o
No

+sin2(5)(1—3(1—e—“0)), (83)
Ng

(L2)—(L)-(L)=h2no(1+co(0)), (84)
(K2) = (K)-(K)=h?no(1+sir?(6)), (85)

(2)=(&)(€)
1 1
= —(1-e ")~ cog(6) — (Ei(no) ~ y~In(ny))
0 0

X e~ "o—sir?( 6) (nl)z
0

(1—e M2, (86)

D. Circular Rydberg atom coherent states

A circle is produced wherd=0 is chosen. The general
Rydberg coherent state in E6) simplifies considerably
(only thep=0 andg=0 terms need to be keptbecoming

|circ,ng, ¢ t>=§ exr{—@n—%ex Nodo ex;{i Ry t{|2j+1,2,2)) (87
Mo, ol = & 2 Jznt 20+ 17 R(2j+1)2 1A HAAD)
in which thej sum is again ovehalf-integers The position vector expectation value is now
. . - (ng)! V' p[ n8¢o>( 1 1 }
circ,ng, ¢g,t|rii|circ,ng, ¢g,t) = e No————expi| Qt+ . —
tclfe:No. o trAleG. o, fo.t Zojzo (2)1(2)")! 2 J12j+1* (2j'+1)°
X{(2j"+1,2)",2)'|[rA|2j+1,2),2)), (89
in which Q=Z2?R, /4. The matrix elements, by lengthy but straightforward computation, yield
y
- i (2j+1)2+4(2j +2)4*3
(2)"+1,2",2) |rn|21+1.21,21>—7 5T o7] %22 +1 (2] 1312775
i (2 +1)%*3(2))5*3
5757 62j12j-1 2] 112772 (89
Thus EQq.(88) becomes
o 3
| o Lap . . ndgo|[ 1 1 )
(C|rc,n0,¢0,t|rn|0|rc,no,¢o,t)—ie OJZO P(j) |cos( Qt+ > || Gis07 @27
3
- nddo|[ 1 1 )
+] sm( Ot+ — ) (2j+1)2_(2j+2)2} } (90




3248
in which
P()_ (no)2j+1/2 (2j+1)2j+4(2j+2)2j+3
Do ehnziel @ire T
_ ng\?
1177
exp — = ———
g\ 2 2 (ngld)
"‘P(no)(T) . 172 ) (91
2
wherein
eho
P(ng) —— . (92
no>1 V2mNg

RONALD F. FOX
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And 1
T=2 ZZZRy =2 ZZmee’” (96)
2,2
@y , heng
=z no_Zmoez’ (o7
mo\ Y2 [ mg |12

Even the coefficient agrees exactly.

The transition from reciprocal squares of the principal
guantum number in the exponentials of E@)) to reciprocal
cubes in Eq.(94) results from the interference of adjacent
energy levels in the expansion of E@7) caused by the
couplings of 3 to 2j+1 created by the matrix elements on
the right-hand side of Eq88). This is a manifestation of the

These limiting approximations permit us to replace the sunfraditional Bohr correspondence prinCifes].
in Eq. (90) by an integral, provided that we observe that the

half-integer values folj in the sum imply a “density-of-
states” factor of 2, i.e.,

[

>

HDHZEmyﬂw. 93

For the circle case, we obtaifor ny>1)

(circ,ng, ¢, t|rii|circ,ng, ¢g,t)

a [~ ZZZRyt+ L ZZZRyH_
ZnOICOW (f)(, ]SIHW (;50 .
(99
Kepler's third law relates the periotlto the radius:
m 1/2
TZZW(TO) r3/2 (95

wherek is the strength of the d/potential. In the present
case,

E. Slightly eccentric Rydberg atom coherent states

To obtain a slightly eccentric elliptical orbit, we chooge
slightly larger than 0, and keep the=1 andq=0 andq
=1 andp=0 terms in Eq.(66) as well as thep=0 andq
=0 term used for the circle case. The equivalent of the
Clebsch-Gordon coefficients can be obtained by using prop-

erties of thel, K, M, andN operators expressed in H5).
In particular,

1
Li—Dy=—(2j+1,2,2j—1
IBESBA ﬁ(lj j,2j— 1)

+|2j+1,2—1,2 - 1)), (99)
) i—1)= 1 (12412 2 1)

]1] ]1] ‘/2 J YJ’J

—|2j+1.2—-1,2-1)). (100

Therefore, a slightly eccentric coherent state is given by

3
n
ellip,ng, g, t)= e 2 2 _exg i— 2j+1,2,2i)+ 6+j|2j + 1,2/ —1,2) — 1)]. 101
[ellip.no. do.t)= 2, Bl Gz |2 +12.2) +0Vil2i+ 1.2 -1 - 1)] (101
We now need variations of the matrix element given in 89):
2j'+1,2)'-1,2)' - 1|rA|2j+1,2—1,2 -1 i ] 1) (2i+ VA2 +2)57 J 1/2
< 1't14°-1.4 - |rn| 1+1,24-1,2 - >_ 2 2| 2j'2j+1 (2j+3/2)4j+4 J+1/2
? I (2j+1)2j+1(2j)2j+3 J_1/2 1/2
+ E_E) O2jr2j-1 2]+ 172772 J , (102
i y ! 1! A H T, ' ao ’I\ ]\
'I‘ ]‘ _1)2j+2(2j+1)2j+1 .
5~ 2_)521'21 2 (2772 Vil, (103
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|+j
272

: oAl e . . 3o . -
(2j+1.2 2|rAl2) +1.7' - 12" ~1)=— 80jr2i(—3(2j + 1)Vj)

(2j+1)8+4(2j+3)4+3

j .
+ _5) O2jr2j+2 2]+ 2)978 Vit1y).

(104

N =

In the sums ford,;:,; 1 and &,j:5; -, lower limit restrictions orj are required so thgt =0. When these are imposgd;an
be shifted so that the nejmuns from 0 tox as before. After lengthy computation, the result is

_ - a , e [4Z7R, 3e
<eII|p,n0,¢0,t|rn|eII|p,n0,¢0,t)=?no +5c0 h—ngt+2¢0 —

( S(zzZRde)
11COS ——73—
And 0

s (4Z°R, )
+§sm h—ngt‘l'zgf)o) . (105

A [2Z°R,
+jlsin P t+ g

3
h)

Because eccentricity only introduces simple harmonics of theadius and m/ng for the classical frequency, EGLO5 may
fundamental frequency,(2/n3, Kepler's third law remains be used to show that the Rydberg atom electron radius mag-
exact. nitude is

We can show that Eq105) represents am perturbation
of the circular orbit described by E@®4). By changing vari-

ables fromr to u=1/r, one may show that the classical \/ ) )
equation of motion isk=Z¢&?, andL is the angular momen- r=rcV1l+3e”—2e cogwct) —36° COS 20l
tum) [30]
=r.(1—&codwct)—e?coq2wt)+e?), (109
et s X gl s a0s
T TR (108 \herein we have used/1+x=1+ix—%x? in which x

stands for all of thes terms. This is precisely the first-order
inversion of the results in E4107), i.e., 1/(1+Xx)=1—X. So
Writing u=uq+ eu; +&2u,, we find far, we have been unable to obtain comparable closed-form
results for arbitrary eccentricity. However, the results here
strongly suggest that higher powers of the eccentricity and

mk 1 1 higher harmonics of the fundamental frequency will make up
Up=—g = —, Uj=—cogwgl), such general results.
L re le
(107
1 F. Dephasing of the azimuthal angle
Up=-— (o 2wct) — 1), While the results above show that the expected value of
Cc

the position executes circular or slightly eccentric orbital
motion, it is also important to determine the rate at which
. . . . . . _ uncertainty in the coordinates grows. In this section, we in-
in which r is the classical radius and is the classical qjigate this issue for the circular Rydberg coherent states.

frequgncy. The bouf‘dafy qonditions usgd for the. solutiorwe show that these states remain tightly compact in looth
just given are that this solution agrees with the orbital equaz g g but exhibit dephasing ig. To do this, we need the

tion att=0, i.e., with explicit coordinate dependence given by E$) and(87).
Define (T, 0, $,t) by

a(l1—¢?)
= 1vscoso)’ (108 Yeird1, 0,0, =(r,0,4[circ,ng, do.t). (110

wherea is the semimajor axis and the numerator is equal torhe probability density associated witlhg(r,6,¢,t) is
the classical radiu$29]. Using Eq.(97) for the classical given by
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nado\[ 1 1
Q=3 >(<2j+1>2‘<21'+1>2}

it _
-3 S e e

1/2Z 2j+2j'+3 1 1 e ) ) )
X—|— - - _ e (2i=2i"¢ gjpri*+2i" (g
7\ ag (2j+DITA2))! (2§ +1)3 +2(2j" ) (0)
. Zr 1 1
2j+2j’ e
Xr exp{ a0 | 2]+ 1 + 2j’+1) (111
|
We can reduce this to distributions in one coordinate at dn parallel with Eqs.(91) and(92), we find
time by integrating the other two coordinates. The required
integrals are
Z”d i2i-2i" =28 11 ex _}(j_”O/Z)Z
o pe =2m0jjr, (112 oo ncz)l l 2 (ng/d) 116
(2j 421 2 2 V27 (ng/4)
T j+2jHn
j+2j"+1 —y_ 7 7
fo do sir? (6) 2(2j+2j,+1)” . (113
- This implies that
f drrZJ*Zi'*Zex;{—ﬁ —.1 +—.1
0 ag\2j+1 2j'+1
ap|2ra’+3 sintl(9)~sirt™o( 9) = exg 2n, In sin( 6
_ 22+ 22 (6) (6)=exg 2n,Insin(6)]
r{ 1(6— 77/2)2} 117
P+2j ~exg—= ———|.
(2j+1)(2j'+1)\2i+2i'+3 2 (U2ng)
T 2+2 2 - (114

In Eq. (113 j+j" is even; fofl + O.dd multiply by /2. This means that the root-mean-square deviation compared to
It is now clear that thep integration produces reduced the mean is

distributions that are independent of time. The reduced dis-
tribution for r and @ is given by

2j 4j+3
n Z\Y
Q0= [ TdgP(r.6,6,0= 22 T | o (a0 vz (118
0 Dt \ag =2 77\/”—0
1
X T TN A 5172
(2j+ D) (2))!] . . .
Thus, for sufficiently largeg, 6is confined to be very close
_ Zr o to @/2, i.e., in the azimuthal plane. Equati¢hl6) also im-
4 _=
Xr 'ex;{ 2| 251 sin(6). (115 plies that
|
Zr\4 Zr| 2 Zr\ 2" on In(Z1)
a—o ex —a—o 2+ 1 ~Z—0 ex ——+ Ny In(Zr/ag)
2ng+2ng | L (r_r°)2 119
~exf —2ny+2ng Inn3lexg — 2(n0a§/222) (119
wherein
a
ro=—"nj, (120

and the variance is clearly3a3/2Z2. This means that the root-mean-square deviation compared to the mean is
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V((ar?) 1
e T (121

Thus, for sufficiently largen,, r is confined to relatively very close to the circle radius of E).
In contrast to these time-independent resultsrfand 6, the reduced distribution for the angfeis time dependent. Using
Egs.(112), (113, and(114), we obtain

- - 2 oz nitl’ n3¢) 1 1 }
_ 2 . _ S I . o%o .
D(p,t) Ldrr fodaslr(o)P(r,e,¢,t) —e ,Z‘ §=) EIIER] exp[. ot =l G @ e

(2j+1)2j’+1(2jr+1)2j+1 1

H Y H AYIR A i(2j—2j")¢
X(2j+2)"+2)[(2j+2]")] (2j+2) 22883 (2j)!(2j’)!e , (122
wherein we have used the identity
S (2j+2j")n o a2
We now use the following approximations:
1 (j—no/2)? 1(j'—ngl2)®
Mg R g2 | T2 T (2 124
JePIEiDT 2mn, Vg Vg ’
2j+1)2" 1(2) +1)A 1 2ng)!1 1% (ng+1)"0* }(ng+1)"o*+?
(21+2]" +2)[(2] +2] N T? (2j+1) . (.,] ) w[( 0) 2] (ng+1) (nzon +2)
(2j+2j"+2)2T2732))1(2j")! (no!) (2no+2)°"o
%22n02—(2n0+2):2—2, (125
3 3
: Nodo 1 1 : no¢o) 1 1
+ . - ~
ex‘{' o+ = )((2j+1)2 (2] +1)2 ex‘{' O @ (2 gt Ding? M2+ (2] —ngt 1)ing)?
~exr{—i Qt+ °2¢°> —(2j—2j")+i| Ot+ °2¢°) = ((2))2-(2j’ )2)}

(126
wherein we have used 1/¢1x)?~1—2x+3x2+---. Replacing the two sums by integrals in accord with E&g), we find
1(x'—ng/2)? o¢o o
SPE e e .
D= — x'
¢ ™ 0 'ﬂ'no

2
L (= no/2f +i(Qt+ °¢°) —(2x )}

F{ 2 (ny2 2
Xex;{—in’(gb— Ot+ Od)o) )U dx (no/2) \/w_no
3
xexr{in(cﬁ— Qt+n02¢0)—83)} (127
No

Now shift the integration variables p=x—ny/2 andy’=x"—ng/2, and obtain

1(y)? nobo 1 (y)? n8¢o>
2no\ Y2 (= (= ex%_z(no—IZ)_ (Q > ) —(2y')? F{_E(nO—IZ) Qt+ — —(2y)?

xex;{i(Zy—Zy’)(dwﬂt%— ¢>0H. (128
0
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By performing the Gaussian integrals and rearranging the results, a normalized Gaussian reduced distribution is produced:

1 3 2
ex —E(g{)—QtZ/no—qﬁo) 5
(— + —(Qt2ing+ ¢0)2>
4ng Ny
e ) (129

(g.1)~
&

1.2 Qt2/in? 2
4_no+n_0( t2Ing+ o)

This distribution clearly shows that the averaged value ofestial analog 243/ G?M?m?m, is 2.14<10 2% s for m

¢ changes linearly with time in accord with the result in Eqg. =m,, about 200 orders of magnitude smaller. Since we
(94). At first glance, it would ap7pear that the variance growsynow the orbital radius and period for the Earfor the
quadratically in time with a hf dependence. This would present purpose, we can ignore the eccentricity of the Earth’s
seem to be negligible for sufficiently largg. However, we  orbit), it is a simple matter to determine the principal quan-
have expressed this growing term in a form that shows thaijum number in accord with the celestial analogs of E6)

after exactly one period of the orbital revolution, the vari- and (97). For the Sun-Earth system we know that 3.16
ance increases from Mg to (1/4no) +(9/no)(2m)? orbya  x 10’ s, and that =1.50x 10! cm. Equation(96) implies
factor of 1421.5. Thus, for typically obtained experimentalihat nsg=2.53x 10’4, and Eq.(97) implies thatnge=2.53
Rydberg atom states with 5np=<200, say, there will be x 1074 This is an enormous principal quantum number. Cor-
Complete dephasing in the angj:mfter less than one orbital responding results for Mars and Saturn y|mgM: 3.37
period. Ifny could be made as large as®1@ay, then about % 1073 and nss= 7.43x 10’6, respectively.

25 orbital periods would be required before the variance Looking back at Eq(129), we see that for the Earth the
grew to order unity. While this may be impossible to achieveyariance grows by a factor of about 1422
for Rydberg atoms, in Sec. IV G we show that it is trivial to x (square of the number of periods). Since each period is a

achieve for celestial bodies. year, the variance will not reach order unity foge=2.53
X 10, until about 18° years have elapsed. This is so much
G. Celestial bodies as Rydberg coherent states longer than the age of the universe that we can conclude that

The issue of the correspondence principle can be ap? Rydberg coherent state treatment of the Sun-Earth system

proached by treating celestial dynamics by the Sdimger yields_a compact, Ioca_lizeq state in all three sphericgl po[ar
equation, and comparing the resulting description with thafoordinates for the e_ntlr.e lifetime of the system. In this limit
of Newtonian classical mechanics. In this section, we do thi®f €xtremely large principal quantum numbers, the quantum-
for the Earth, Mars, and Saturn. The strength of attractionechanical treatment of celestial dynamics reproduces the
Z€2, for Rydberg atoms need only be replaced@lyim for classical mechanical description with very great precision.
celestial bodies wher€&=6.67x10 8 dyn cnf/gn?, New-

ton’s gravitational constanil = 1.89x 10*3gm, the mass of V. TEMPORAL DECORRELATION

the Sun; andn=m,="5.98<10"/gm, the mass of the Earth.  gejiomo and Stroud5,6] used the time autocorrelation
The masses of Mars and Saturn are O O&nd 95.1,, function proposed by Nauenbeft3,14,
respectively. This change in attractive strength is enor-

mous: Ze*~Zx23.04<10 ?ergcm and GMm,~7.538 [

X 10° ergcm, about 72 orders of magnitude larger. The C(t):<'/f|eXF{_gHt}|<//>
Bohr radiusA?/mge? is 5.29< 10~ % cm, whereas the celes-

tial analog#2/GMmm is 2.44<10 %3¢ cm for m=m,,  where|y) denotes either a generalized coherent state or a
about 127 orders of magnitude smaller. Similarly, the Bohrwave packet. For the circular Rydberg coherent states, this
orbital period 27%3/e*my is 1.5 107 1¢ s, whereas the ce- yields

2
: (130

2

C(t)= |cire,ng, ¢o)

i
(circ,n0,¢o|exp{ % Ht

* 2] 2 2
ng Z°R

z —ho__—_ A

J:oe 0(21)!ex+ﬁ(21+1)24

1 Qat\? 2
T)zﬁex —2n0 n—g W , (131)
(]

14| —5 +|—
No h)
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where agairﬂ:ZzRy/ﬁ, In a Kepler periodsee Eq(94)], VI. GAUSSIAN GENERALIZED COHERENT STATES
i.e.,t=T=n37/Q, the decorrelation is considerable for even
modestly smallny. Nevertheless, as already noted by Bel'parallel with the method used for Klauder staf8k Given
lomo and Stroud6], decorrelation does not necessarily im- E :

. g. (15), we replace Eq(16) with
ply a spreading of the wave packet. However, they went on
to observe that the mean-square deviation ifor circular
Rydberg states is proportional t(g (their R), which is very )
large asng increases. In Sec. IVF it was shown that the . exp{—l (n—no)
relevant quantity is the ratio of the root-mean-square devia-

A Gaussian generalized coherent state is constructed in

4 o’ .
tion and the mean radius which is given by E&21). This |G*”0*¢0>:nzo (N(ng) ™2 e'*n?oln) (132
qguantity becomes very small with increasing. Thus, as
was shown above, the Majumdar-Sharatchandra Rydberg
states are very well localized in bothandr but, neverthe-
less, delocalize rapidly i unlessn, is extremely large, as Where
in the case of celestial mechanicee Sec. IV G
The Gaussian wave packets used earlier by Nauenberg
[13,14] and many others, and by Mallalieu and Strgad], o ;{ (N—ng)?

have the advantage that their variances are very small com- N(ng) = 2 exg— ——1| (133
pared with the variances of ordeg imposed by the Gauss- n=0 20

ian limit of the Majumdar-Sharatchandra Rydberg coherent

states. Observed decay and revival, and even fractional rend this guarantees normalization
vivials [12] can be explained using sharp Gaussian wave
packets. This is achieved by expanding the energy denomi-
nators around the principal quantum number that is at the
center of the sharp Gaussian. The incommensurate frequen-
cies become almost perfectly uniformily distributed in this Clearly, asng—o, N(no)—>\/2770'2, but for finite ny and
approximation. They are virtually in resonance with eachbecause the summation is discref§,ny) is generally not
other[12]. However, no resolution of the identity operator determined in closed form. The resolution of the identity

exists for these Gaussian wave packets. This deficiency isperator is achieved by givingy a domain of —« to «

(G,ng, dolG,ng, oy =1. (134

remedied in Sec. VI. rather than just the positive values.
= 1 - 1 < (n—ng)? -
f_xdno(gmﬁ f_¢d¢oK(no)|G,no,¢0><Ganoa¢o|—J_wdnoK(no)ngO eXF{_Toz_ |n><n|_nzo InXn[=1,
(139
|
providedK(ng) is given by 1 (n—ng)?n*M
e
_ M iendg
IM,ng, $o) nZO n (N(ng)) 2 e'n?o[n),
N(no) (137
K(ng)= 5. (139
270
where
The interesting and useful Gaussian coherent states are those
with ny positive and reasonably large, but the states with
negativeny's are required for resolution of the identity op-
erator. For highly negativey, N(ngy) becomes very small, o (n—ng)?n™
and the states contain atl’s with slowly decreasing ampli- N(nn) = n2M exr{ _viTo 138
tudes. However, this permits sharpness in the variable con- (No) nZO 202 ' (138

jugate ton,. For large positiveny’s, the states contain al-
most exclusively thos@)’s within threeo’s of ng.
It is easy to generalize these Gaussian stg2é§to the
form and the resolution of the identity operator takes the form
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% 1 (@ Application of this construction to the Rydberg coherent
J dng lim EJ depoK(Ng)[M,ng, do){M,Ng, by states requires slight modifications to accommodate the sum-
IR i ¢ mations over half-integer indices. For the Gaussian Rydberg
" 1 coherent states, we obtain
=| dnyK(ng) — >, n?M
f_w oK (o) Nng) ngo p[ (j—nOIZ)T
- LT Ta
(n—n )2nM _
xexr{—% [n)(n|=3 Inxnl=1, IGRM0.60) = 2, —Nimg ™
g n=0
3
(139 . Mdo |
” dK( ) ) ) o xXex I2(2J+1)2 |J!0M1¢M10N1¢N>’
providedK(ng) is given by
° (142
N(no)
K(ng)= —, (140  where
2mwo?
- . (j—no/2)?
since N(no)zg0 exp{——zaz : (143
o (n_n0)2n4M 27T0'2 1/2
f dno exp — 2 = M (141) . .
e 20 n In both Egs.(142 and (143, the summation is over half-

integerj’s. When approximating this sum by an integral, the
The inclusion ofn™ in Eq. (137 tends to suppress coeffi- density of states factor of Bee Eq(93)] must be included.
cients nean=0, which may be desirable for states wity ~ Thus, for largeny, N(ny)—2\27a? approximately. The
positive but small. resolution of the identity operator is given by

© ) 1 [0
f_wd“o “mﬁf_(bd(ﬁo'((no)f dQMf dQn|GRNg, $o){GRNg, by

oo
[ dnokng i S Sy r{ —r(j_n‘)mz}l' )33l
= noK(n exg — M) |1, M) <) Myl(),m
0o 0 N(No) b m =) m=-; 20 Jmv (1M MK Mg
i j j
=> 2 2 |im)li ) myl (G m =1, (144
=0 my=—j my=—j
providedK(ng) is given by
N(no)
K(ng) = . 14
(no) A (149

For sufficiently largeng, this weight approaches unity.
The correlation function defined in EQL30) is easily computed because of the temporal stability property of the Gaussian
Rydberg coherent states, i.e.,

407

i . ng¢o
ex;{_%chGR,no,(ﬁo):jEO (N(ng) ™ ex‘{'z(zHl)Z

Therefore

[{ (i—ne/2?

. Z°R, _
ex Imt |J’0M'¢M!0N1¢N>' (146)

2

C(t)

1 < (j —ngl2)? - Z°R,
N(no)% ex”[_ 207 }exr{'h(ZjH)Zt

= S mexr{ —160%( 7t/ T)?
1+ — (m/T)Z)

1
1+5760*(wt/T)2/ng

, (147
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whereT is again the Kepler period. For smatland largeng, this expression decays slowly compared with BR1). By a
similar analysis, the calculations leading to EtR9 for the azimuthal angle dephasing may be reevaluated for these Gaussian
Rydberg coherent states. The result is

1 (1 3602

ex —E(qﬁ—QtZ/nS— b0)? +

-1
o (Qt2/n3+¢0)2) ]
0

D(p,t)~ . (148
1
\/277( o2 +3602(Qt2/n3+ ¢0)2/n§)

This result shows that many orbital periods may elapse befrom will show revivalg[12]. The use of the integral approxi-
fore significant delocalization in the azimuthal angle occursmation in Eq.(147) smooths out and eliminates the revivals,
if o is sufficiently small andn, is sufficiently large. For much like in the case of the Jaynes-Cummings m$aa),
example, assume that, is 320 ando is 2.5 (these are the where revivals are a result of the discreteness of the fully
values used by Mallalieu and Stro{iti2] in their Gaussian quantum description.

wave packets With these values, the standard deviation,

which is initially 5 rad, doubles only after 72 orbital periods.

When these same values fag and o are placed in Eq. ACKNOWLEDGMENTS

(147), however, the decay is considerable even after only one
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