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Coupled translational and rotational diffusion in liquids 
Ulrich Steiger and Ronald F. Fox 
School 0/ Physics, Georgia Institute o/Technology, Atlanta, Georgia 30332 

(Received 29 January 1981; accepted for pUblication 11 August 1981) 

The equations for coupled translational and rotational diffusion of asymmetric molecules 
immersed in a fluid are obtained. The method used begins with the Kramers-Liouville equation 
and leads to the generalized Smoluchowski equation for diffusion in the presence of potentials. 
Both external potentials and intermolecular potentials are considered. The contraction of the 
description from the Kramers-Liouville equation to the Smoluchowski equation is achieved by 
using a combination of operator calculus and cumulants. Explicit solutions to these equations are 
obtained for the two-dimensional case. Comparison of our results with earlier literature is also 
presented. 

PACS numbers: 05.40. + j, 51.90. + r 

I. INTRODUCTION 

In this paper we study the translational and rotational 
motion of molecules immersed in a fluid. The molecules ex­
perience translational and rotational Brownian motion as a 
result of the bombardment by fluid molecules. The descrip­
tion of this essentially stochastic process in terms of the 
probability-distribution function P(t,x) leads to a diffusion 
equation 

a a2 a 
-P(t,x) = Ialj(x)--P(t,x) + Ib;(x)-P(t,x) 
at ;J ax;axj ; ax; 

AP(t,x) (1) 

for all times t~O and all points x, x = (Q"q2,q3,cp,e,t/J). 
Q = (Q"Q2,Q3) describe the position and the Euler angles 
a = (cp,e,t/J) fix the orientation. The differential operator A is 
a diffusion operator. All eigenvalues of the symmetric ma­
trix [alj(x)] are non-negative. For translational diffusion AT 
is simply a diffusion constant multiplied by the Laplace op­
erator. Favro 1 derived the diffusion equation for rotational 
Brownian motion and was able to solve it for axial symmet­
ric molecules using the fact that the diffusion operator AR 
has the same form as the quantum mechanical Hamilton 
operator for a rigid body,2 the properties of which are well 
known. In general the translational and rotational motions 
are coupled in a complicated way. 

Already 50 years ago, Kolmogorov showed that under 
very general conditions a Markov process defined in terms of 
the transition probability F(t,x,x')dx' of finding a particle 
initially at point x in the infinitesimal small set dx' after a 
lapse of time t, leads to a diffusion equation. The probability 
density 

P(t,x) 1 F(t,x',x)P(O,x') dx' 
s, 

(2) 

satisfies Eq. (1). Sx is the space containing all points x. P (O,x) 
is the initial distribution at time t = O. 

The concept of a Markov process is an idealization of 
the underlying physical reality. For a complete dynamical 
description, it is necessary to consider the distribution func­
tionfc(t,xc> Yc) defined on the phase space Sx, XSy , consist­
ing of all points (xc, Yc) with Xc = (Q"Q2,Q3,cp,e,t/J) and the 
canonically conjugate momentayc = (p" P2' Po' Pd>' Pe, Pv,). 

The distribution function Ic (t ,xc, y c) satisfies the Kramers­
Liouville equation3

,4 

(3) 

L is Liouville's operator and K denotes Kramers operator, 
which describes the effect of all random forces acting on the 
Brownian particle. IfEq. (3) can be solved for some initial 
distributionfc (O,xc' y c) then it is possible to find an operator 
G (t,xc ) such that the averaged distribution P (t,xc) defined by 

P (t,xc)== f dyc Ic (t,xc> Yc) (4) Js 
" 

fulfills the first order differential equation in time: 

a 
-P(t,xc) = G(t,xc)P(t,xc)' 
at 

(5) 

In general nothing is gained, since G (t,x,) might be a very 
complicated operator. We will use the cumulant expan­
sion5,6 to approximate the operator G (t,xc)' 

G (t,xc) = I G Inl(t,X,). (6) 
n=1 

It turns out, that the diffusion operator A is the first 
nonvanishing term in the expansion (6). Equation (I), where 
A is now replaced by the second cumulant G 121(t,xc) 
[G l'l(t,xc) = 0], is a very good approximation of (5). K de­
scribes the time evolution of the distribution of the momenta 
due to random forces. The momentayc(t) can be considered 
as random variables, which very quickly become indepen­
dent. Yc (t ) is independent ofYc(t +..1t) if the lapse of time ..1t 
is large compared with the correlation time 1'k' It can be 
shown,7 that the nth cumulant is proportional to 

(7) 

fis a dimensionless quantity. f=1'kI1'. 1'is some typical mac­
roscopic time unit. 

Intuitively, it is clear that we obtain a Markov process 
on Sx described by (I) if the correlation time l' k of the mo­
mentaY,(t) becomes very small. It is the short correlation 
time which makes the higher order contributions small. 

The idea of deriving the diffusion operator A as the low­
est order of a cumulant expansion (6) is not new. The actual 
calculation of the operators A ,G 1.11, ... , is complicated by the 
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nonlinearity of the equation of motion for a rigid body. The 
time derivatives of the angular momentum L ' and transla­
tional momentum p' expressed in an orthogonal coordinate 
frame attached to the moving particle are 

£' =L'XI-IL' +N', 

(8) 

jJ' = p'XI-IL' + F'. 

N' and F' are the torques and the forces acting on the parti­
cle. The prime denotes vectors in the body fixed coordinate 
frame. I is the tensor of inertia. It is necessary to choose body 
fixed coordinates for both L ' and p' since otherwise the fric­
tion tensor C depends on the orientation [see (70)].8 

The purpose of this work is to analyze the rotational 
and translational diffusion in the most general case using a 
mathematically transparent method. We will show that 

(i) The generalized Smoluchowski equation is the lowest 
order contribution of G (t,x c ). Starting off with a Maxwell 
distribution at time t = 0 the diffusion tensor is time depen­
dent. For t < 1'k the diffusion tensor depends on the mass and 
the moments of inertia, and becomes stationary for t).1'k' 

(ii) The diffusion equation couples the translational and 
rotational degrees of freedom even in the simplest case. 8 As 
an illustration, the two dimensional diffusion equation is 
solved. The solutions are obtained in terms of exponential 
and Mathieu functions. (Sec. V). 

(iii) A suspension of N interacting Brownian particles 
leads to a diffusion equation for the N particle density 
P(t,x~I),X~2), ... ,X~N)). (Sec. IV). 

In Sec. II the operator calculus used later is introduced 
and applied to the translational motion. Section III treats 
coupled translational and rotational diffusion. 

II. OPERATOR CALCULUS, TRANSLATIONAL 
DIFFUSION 

The starting point of the theory is the Kramers-Liou-
ville equation.3

•
4 

a 
- f(t,q, p) = B f(t,q, p) = (L + K )f(t,q, pl. (9) 
at 

q are the coordinates describing the position, q = (ql,q2,q3) 
and p are the conjugate momenta. Liouville's operator is 

Lf= -m-Ip'~f+ au '~f 
aq aq ap 

u denotes the potential. Kramers operator is 

Kf=a~.(m-Ip + kT~)f 
ap ap 

It is convenient3 to work in the "interaction picture" 

f-e'K] 

(10) 

(11 ) 

(12) 

The exponential e'K is defined by a formal power series in tK 
and acts on the new functionj which is assumed to be smooth 
enough, such that the series e'K j=~: ~ 0 [(tK)n In!] j con­
verges. The smoother jthe smaller the contribution of (tK)n 
which is a differential operator of order 2n in the variable p. 
The time evolution for j is governed by the Kramers-Liou­
ville equation in the "interaction picture". 
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a - - - --f= e-IKL e'Kf L (t)f 
at 

(13) 

The operator L (t ) can be expressed in terms of the differential 
operators alaq and alap using the identity 

(14) 

The proof of this equation is found in Ref. 5. The operator on 
the right hand side is by definition 

e- [K.·IIL =L + f [K,·j"L [( - t)"lnfJ. (15) 
n~1 

The commutators [K,· j"L can be defined by recursion, 

[K,.j1L =[K,L ], 

[K,·fL =[K,[K,L]], 

[K,.]nL =[K,.]([K,.]n -IL). 

(16) 

We can calculate all terms in the infinite sum (15). Applying 
the commutator algebra discussed in Ref. 3 leads to 

L(t) = - e-la/m)I~. (L + kT~) 
aq m ap 

+ ela/mll ~ • (aU + ~). 
ap aq aq 

(17) 

In Sec. III the corresponding expression for translational 
and rotational motion is derived in great detail. 

Formally, the solution of(13) can be written 

j(t) = E(t 1l0=T exp ('ds L(sllo, (18) 
~ Jo 

in which T exp is the time ordered exponentiaLS jo is the 
.~-

initial distribution. The time ordered exponential must be 
used becauseL(t l) does not commute with L (t2 ) iftl #t2• We 
would like to derive the time evolution for the averaged dis­
tribution P (t,q), 

P (t,q)= J d 'p f(t,q, p) = J d'p e'Kj(t,q, p) 

= J d 3pj(t,q,p)=<i(t,q). (19) 

The third equality can be proved by expanding the exponen­
tial e'K. After integrating by parts, all but the lowest order 
term, which is], vanish. We can assume that 
j(t,q,p)lp,~ oc = O. 

We write the initial condition 
j(O,q, p) Jo(q, p) = fo(q, p) in the form 

fo(q, p) = g(q, p)Po(q), 

Po(q) = <fo(q)· 

With Eqs. (18)-(20) one obtains 

P (t,q) = f d 3p j(t,q, p) 

= J d 3p E (t )g(q, p)Po(q) 

_<E(t )gPo(q). 

U. Steiger and R. F. Fox 
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The operator (E (t) g is obtained by multiplyingg(q, p) from 
the left with E (t ) and integrating over the momentap. Differ­
entiating Eq. (21) with respect to t gives the time evolution 
equation 

:r P(t,q) = ( :r (E (t) Ii )(E (t); Ip (t,q). (22) 

We expect that the inverse (E (t ) g- 1 exists at least for small 
times. It may be obtained by the Neumann series9 

A -I = 1::;"=0(1 -A r. The operator 

G(t,q)=(:r (E(t)g )(E(t)g-" 

!... P (t,q) = G (t,q)P (t,q), 
at 

(23) 

depends onq sinceg(q, p) is a function on q andp. But in most 
physical applications the initial distribution of the momenta 
does not depend on the position q. In this case the operator G 
depends only on t. 

In order to calculate G (t 1 we use the cumulant expan­
sion,5-7 which is obtained by reordering the expression 

G(t) = n~o{[(t)!, exp Sa' [(S)dS)g \1- ~ exp Sa' [(S)dS):, 

(24) 
G(t) = :i GIl). 

1= 1 

Compare (18), (22), (23). G (I) contains all terms of the sum in 
(24) which are of order I in the operator [(s). The two lowest 
order terms are 

G(I)(t) = ([(t)g = Jd 3p [(t)g(P), 

G(2)(t) = fdS([(t)[(S)g - f ds([(t)g ([(s)g 

(25) 

= L ds fd3p [(t)[(S)g(P) 

-f ds f d 3p[(t)g(p) f d 3p'[(s)g(p'). 

The higher order terms are given in Sec. VI. 
We assume that the distribution in the momenta is ini­

tially a Maxwell distribution 

g(p) = (21TmkT)-3/2 exp( - p 2/2mkT). (26) 

In this case, it is easy to verify that the first cumulant G I I1(t ) 
vanishes for all times t~O. The second cumulant is 

G(2)(t) = kT ..!!..... (_1_ au + ~)(1 _ e-I(l/m)t). (27) 
a aq kT aq aq 

The time evolution equation (23) is, to second order in [, the 
Smoluchowski equation with time-dependent diffusion 
"constant", 

298 

A (t) = kT (1 _ e - (a/m)t), 

a 

-P(t,q) = -.A(t) -- + - P(t,q). a a ( 1 au a ) 
at aq kT aq aq 
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(28) 

At t = 0 the diffusion constant vanishes since by assumption 
the distribution inp was given by a symmetric function, the 
Maxwell distribution. After a short time of order ml a the 
particles start moving until finally the Boltzmann distribu­
tion is reached. In order to illustrate the meaning of the time­
dependent diffusion constant A (t) we calculate the first and 
second cumulant with the initial distribution 
g( p) = o( P - Po). All particles have the same momentum Po 
at t = O. In this case the first cumulant does not vanish: 

G I1)- _el-a/m)tp m- I ~ 
{) - o· aq' (29) 

G~) = J... (e - la/m)t _ e - 2(a/m)t ) 

a 

+ J...(1 _ e--1a/m)t) ~. (aU + kT ~).(30) 
a aq aq aq 

In the limit t-+oo both expressions (27), and (29) and (30) 
agree, as they should. The operator G (t ) is independent of the 
initial condition for large times. The larger aim, the faster 
G (t) approaches the constant expression. For very large val­
ues of aim the dynamics governed by (23) approaches a 
Markov process. Formally the Markovian limit is obtained 
by first rescaling the time 7 = a - I t and taking the limi t 
a--+ 00. In this limit all higher cumulants vanish since they 
are proportional to higher powers of lIa. 

III. COUPLED TRANSLATIONAL AND ROTATIONAL 
DIFFUSION 

We consider particles of arbitrary shape in a fluid. The 
friction forces depend on the orientation. We will describe a 
proper choice for the variables. In Refs. 10 and 11 inconsis­
tent definitions which lead to wrong results are used. 

The position and orientation of each particle is deter­
mined by the six variables comprised in the sextuple x, 

(3 I) 

o is an arbitrary origin and C the center of mass. q I,Q2,q3 are 
the coordinates of the vector OC in the laboratory frame 
where el ,e2,e3 are three arbitrary orthogonal vectors of 
length one such that el Xe2 = e3, et cyclic. It is convenient, 
to choose the Euler angles a = (f/J,O,I/J) to describe the orien­
tation. 12 We will also use the body fixed coordinate frame 
e; ,e2.e; such that the tensor of inertia I becomes diagonal. 
The components of the vector e; expressed in the laboratory 
fixed frame el ,e2,e, are 

R (f/J,O,I/J)= [R/i(f/J,f),I/J)]. (32) 

The Euler angles are defined by 

R (f/J,O,I/J)=:=Rz(f/J )Rx(O )Rz(I/J)· (33) 

Rz (f/J ) and Rz (I/J) are counterclockwise rotations of a vector 
about the e3 axis. Rx (0) is a rotation about the el axis. 
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Rz(,p) = e"'T" 

R x (0 ) = eOT" 

Rz(tP) = e"'T,. 

The 3 X 3 matrices T I, T2, T3 are defined 

(34) 

(Tj)/rn = E ilm · (3S) 

Eilrn is the completely antisymmetric Levi-Civita tensor. Be­
sides the position x (31) we need the momentay, 

y = (p; ,P2,p;,L; ,L 2,L ;). (36) 

Both the translational momenta P' and the angular mo­
menta L ' are expressed in the body fixed coordinate frame. 
The tensor of inertia and the friction tensor depend only on 
the mass distribution and shape of the particle. They are 
independent of the orientation ifbody fixed coordinates are 
used. According to (32) the vector p' and p=mq, where m is 
the mass and the dot denotes the time derivative, are related 
in the following way: 

p' = R t(,p,O,tP)p 

= R -1(4),O,tP)P. (37) 

The angular momentum L ' is the product of the angular 
velocity w' and the tensor of inertia I, 

L' = Iw'. (38) 

With Eq. (37) the skewsymmetric angular velocity matrix 
n 13 expressed in the body fixed frame is 

n = R -lit (39) 

The matrix n and the pseudovector w' are related: 
3 

n= LW;Tj. (40) 
;= 1 

In order to obtain n in terms of the Euler angles a = (,p,O,tP) 
and their time derivatives we substitute in (39) for the rota­
tion R the expressions (33) and (34). Evaluating the time de­
rivative in (39) and multiplying R from the left with R -I 
leads to 

n = ¢ e - "'T'e - OT, T3eOT'e"'T, 

(41) 

We compare this expression with (40). Equation (41) can be 
simplified using the commutator algebra [Ti'~] 
= Eijk Tk • 2.12 One obtains for the angular velocity w' 

W2 = ¢ sin 0 cos tP - fJ sin tP, (42) 

w; = Ip + ¢ cos O. 

Now we are able to describe the motion of the particle com­
pletely. The phase spaceS" XSy consistsofallpairsz = (x,y) 
defined by (31), (36), (37), (38), and (42). 

A. Liouville's equation 

The motion of the rigid body is a solution of the canoni­
cal equations8 
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. aH 
x =-, 

c aYe 
. aH 

Yc = - -a ' 
Xc 

H(xc'yc) = 2~ IlpW + ~ '·I-IL' + U(xc)' 

(43) 

The canonical conjugate variables Xc and y c are Xc = X and 
Yc = (PI,P2,P3'P""PO'p",), The canonical conjugate mo­
menta for the angle variables a = (y,O,tP) are given by 
Pa = aT faa with T=!L '·1 -IL'. 

p", = L; sin 0 sin tP + L 2 sin 0 cos tP + L ; cos 0, 

Po = L; cos tP - L 2 sin tP, (44) 

p"'=L;. 

For every solution zc(t )=(xe (t), Ye(t)) ofEq. (43) Liouville's 
theorem holds, 

~ !c(t,zc) + Zc . ~ !c(t,zc) = O. (4S) 
at azc 

It would be more convenient to express the particle density 
distribution!c as a function of the variables z = (x, y) defined 
earlier, instead of as a function ofzc = (xc,Yc)' We define a 
new density 

f(t,z)=!c (t,zc (z)). (46) 

With the following identities, one obtains the Liouville equa­
tion (48) for the new density f(t,z). 

a az a 
-=--, 
azc azc az 

Z= ~z(t)=~z(zc(t))= ~zco 
dt dt azc 

az azc -- = 112 
azc az 

112 is the 12 dimensional identity matrix. We get 

~ f(t,z) + z ~f(t,z) = o. 
at az 

(47) 

(48) 

The transformation Zc = zc(z) is given by Eqs. (37) and (44). 
The Jacobian determinant is - sinO. For any observable 
0= 0 (ze) the expectation value EO =SdzeO (zc)!c(t,zc) can 
also be expressed in the new variables z = (q,a, P' ,L '), 

EO= fdzj Det(~;)jo(ze(Z))f(t,z) 

= f d 3qd,pdO sin OdtPd3 p'd 3L' 

XO(q,,p,O,tP,p',L ')f(t,q,,p,O,tP,p',L '). 

(49) 

Equations (4S) and (48) are formally the same but the mean­
ing of the differential operators a/azc and a/az are very 
different. 

(SO) 

The gradient a/axe is evaluated with the canonical conju­
gate momentaYe = (PI,P2,P3'P""P",) fixed. When a/ax op­
erates, the momenta y = (pi, P2' pi ,L 2,L i) are fixed. 

U. Steiger and R. F. Fox 299 

Downloaded 24 Jul 2012 to 130.207.50.37. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



(51) 

Rather than using (47) to calculate:i we got back to Euler's 
equation. 

a d a 
-.L - --.L=O. 
aXe dt a:( 

(52) 

The Lagrange function .L is.L = ~tM-'y - U(xe)' Mis 
the generalized inertia matrix 

M = (mol3 ~). (53) 

M is a symmetric 6 X 6 matrix. Keeping in mind that 
y = y(xcoxe) Eq. (52) can be written 

The derivatives ay/axe and ay/axe are 6X 6 matrices. Eval­
uating the time derivative gives J 

R (¢J,O,,,,) o 

A- ' = 
1 . .1. 

--S1O'I' 
sin 0 

o cos '" 
- cot 0 sin '" 

We can write the matrix A and B in block form, 

A= (
R -\ 

o 
0) B= fBI 

A' , \0
3 

BA -\ = (B\R BzA '-') 
\o3R B4A ,-I . 

Comparison of (37) and (44) with (58) gives 

y = MA (xc)xc' 

1 
--cos'" 
sin 0 

- sin '" 
- cot 0 cos '" 

(60) 

(61 

With (61) the matrix B can be expressed in terms of A. 
B = (d / dt)A - (a/ axc )Axc' The matrix B \R is therefore 
equalto((dldt)R -')R = -n.Bydirectcalculationwefind 
that also B4A ,- \ is equal to - n. The matrix B3 vanishes. 
This leads to 

Br'~ - ~ ( a "R - \ . A' - I)] -£.. il.: ql.: il aaj i,k • 

n 
We define the differential operator D x , 

Dx=A -\t~. 
ax 

According to (57)y is 

. (P'XOJ') 
y = - Dx U(x) + \L 'xOJ' . 
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(62) 

(63) 

(64) 

ytM- ' ay +yt(M- 1 !!.. ay -M- ' ay ) 
aXe dt aXe aXe 
au + -(Xc)=O. 
aXe 

The following definitions are useful: 

Alk= ~ M-1 ay", 
£.. 1m -a' , 

m ~ I Xck 

B lk = ± M ,-;;, I(!!... ay", _ ay",). 
m ~ I dt aXek aXek 

Equation (54) can be solved for y. The result is 

(55) 

(56) 

yt = _ aU(xJ A -I _ ytBA -I. (57) 
ax 

au / ax = au / aXe in agreemen t with (51) since the poten tial 
U does not depend on the momenta. From the transforma­
tiony = y(xc'xe ) given by (37) and (44) one obtains for the 
matrix A 

A~C-':MI 
0 

sinO sin", cos'" 0) (58) 
sinO cos'" - sin", o . 

cosO 0 1 
The inverses of this matrix is 

(59) 

We used the fact that the following contribution vanishes: 

" ,. B(R ") £..R ii ql -a ike ql.: 
I,k aj 

I" a (R-1'R- 1') = - £.. - i/ q/ il.: qk 
2 I,k aaj 

=..!.~ IIR -lq112 = ..!.~ IIql12 = O. 
2 Baj 2 aaj 

Equation (64) is Euler's equation of motion for a rigid 
body. The differential operator Dx is explicitly given by Eqs. 
(111) and (112).In the following it is more convenient to write 
the last term in Eq. (64) as a quadratic form iny, 

(Y)n = - (Dx U(x))n + 2:a/mnYIYm, 
I,m 

= I(Cln)M-1 +M-1c(n)t) almn ~ 1m' 
(65) 

C ln
) = (~ Tn) 

o ' 

Cln+ 3) = (~ ~J, n = 1,2,3. 
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The tensor almn is defined such that almn = amln . With these 
definitions we obtain Liouville's equation (48) in the form we 
will use it in the following. 

a {_ - f(t,x, y) = - yM '·Dx + (Dx U(x))·V 
at 

(66) 

The operator i·a/ax in (48) and (51) is equal toyM-'·Dx 
sincey = MA (x)i [(61),(63)]. V denotes the gradient with re­
spect to y with components V n ==.a/ay". 

B. Kramers-Liouville equation 

The motion of the particle is influenced by an external 
potential U and a "Brownian fluid," which is composed of 
molecules which exert fluctuating forces and torques, 

Ii (t) = (F(t ),N (t)). (67) 

In the absence of an external potential the equation of mo­
tion is 

y = - r '" ds r(t - s)y(s) + Ii (t). (68) 

For a derivation of the generalized Langevin equation (68) 
see Ref. 14. The friction tensor r (t ) is proportional to the 
correlation of the fluctuating forces Ii (t), 

r(t) = _1 (Ii(O),Ii(t). 
kT 

(69) 

The symmetric tensor r (t ) is independent of the momenta y 
for heavy solute molecules. In the following we will use the 
"Markovian limit". 

y = - Cy + Ii (t ), C = LX> r (s)ds. (70) 

The following discussion can be generalized simply by re­
placing the 6 X 6 matrix C with the corresponding expression 
in (68) in all equations. 

In Ref. 14, Eq. (68) was derived from a linearized set of 
the equation of motion. Therefore one does not have to dis­
tinguish between the laboratory and the body fixed coordi­
nate frames. The difference consists of quadratic terms 
L ' X u/ and p' Xu>'. The idea is that over a short time of the 
order of the relaxation time both frames do not differ very 
much. After combining the stochastic equation (70) with 
Newton's equation, we can follow the orbit over an arbitrary 
long time and must therefore distinguish between both co­
ordinate frames. The equation of motion containing the 
forces due to the fluid and the external forces is 

(71) 

In Refs. 10 and 11 the term p' X u>' is omitted. The general­
ization of Liouville's equation including stochastic forces 
can be obtained from (71).5 The result is the Kramers-Liou­
ville equation 
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~f= (L +K)J, 
at 

Lf= -yM-'.Dxf+(DxU).Vf- 'Ialm"YIYmVnJ, (72) 
I,m,n 

K/= V·C(M -'y + kTV)f 

The operator K is known as Kramers operator. 

c. The operator [ 

In the translational case it proved very useful to go to 
the "interaction picture". 

f= e'K j, 

L(t)=e-IKLe,K=L+ n~,[K,.]nLC~;)"). (73) 

The operator L consists of three terms. 

L = Lo + Lf + Lq, 

Lo = - y.M-'Dx ' 

Lq = - 'IalmnYIYmV", 
Imn 

(74) 

The calculation of the ope~tors Lo and LI does not pose any 
difficulties. However, for Lq the situation is different since 
Lq contains quadratic terms in q. The commutators with K 
become more complicated. 

All operators needed in (74) are contained in the algebra 
generated by XI' Ym,v",a/ax i • The position and momenta 
are independent. From the definition (51) we obtain 
[V",XI] = 0 and [a/ax"Ym] = O. The partial derivative 
a/ax i is evaluated with the momentay = (p',L ') held con­
stant. The differential operator (Dx), (63) also commutes 
withYm and V n for all components i,m,n. The only nonvan­
ishing commutator needed for the calculation of Lis 

(75) 

The operator Lo(l) is given by the infinite sum 
Lo(l) = Lo + 'I.:;' ~, [K,. rLo(( - t )"/n!). In order to sim­
plify the notation we introduce the matrices C and C and the 
operator i5., 

C-CM-', C-CkT, Dx--M-'Dx. (76) 

Kramers operator becomes 

K = V.Cy + V.ev. (77) 

The operator Lo is Lo = y.Dx . The first time-dependent term 
in the expression for Lo(t) is equal to - t [K,Lo]' This com­
mutator is 

[K,Lo] = [V.Cy,y.i5.] + [V.ev,y.Dx ] 

= 'I C"/(Dx)m [Vn YoYm] 
n,l,m 

+ ICn/(Dx)m[VnV1,Ym}' 
n.I,m 

(78) 

The following identities hold for arbitrary operators A,B,C: 

[A,BC] = [A,B]C + B [A,C], 

[AB,C] = A [B,C] + [A,C]B. (79) 
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With (79), (78) becomes 

[K,Lo] = Ien,(Dx)rn{Vn[y"Ym) + [Vn,Yrn)yJ 
n,/,m 

+ I Cn,(Dx)m {Vn [V"Ym) + [Vn,Ym )vJ. 
n.l.m 

With (75) and using the fact that the matrix C = CkTis sym­
metric, 14 leads to 

[K,Lo] = Dx'Cy + 2Dx·Cv. (80) 

For the higher order commutators one obtains 

[K,.JnLo = Dx·Cny + 2 I Dx·CrnC(-ct)'v. 
rn+'~n-I 

(81) 

This equation can be proved by induction on n. The calcula­
tion is similar to the calculation of [K,LoJ. We observe that 
the matrix CrnC is symmetric for all m>O since 

CrnC =CM-ICM-I .. ·CM-ICkT 

= (CmC)t = CCtm. 

C and M are symmetric. Using this property the last term in 
(81)becomes2~m+'~ n- I Dx·Cm(C)'Cv. The sum vanished 
for even n. For odd n it is equal to 2Dx·Cn- ICv. 

{ 
Dx·Cny, n even 

[K,. JnLo = D .Cn + 2D .en - ICv n odd. 
x y x , 

The final result for the operator Lo(t ) is 

Lo(t) = f [K,.]"Lo[(-ttln!] 
n~O 

(82) 

= Dx.e- ICy + Dx.(etC - e- tC) C-ICv, (83) 

and with the definitions of C, C, and Dx [(76)] one obtains 

Lo(t) = - y.M-IE( - t)Dx 

+kTV.[E(t)-E(-t)]Dx. (84) 

The matrix E (t) is the exponential 

E (t )==etCM 
'. (85) 

The corresponding expression used earlier for the transla­
tional motion 

- P . ~e-Ia/m)t + 2kTsinh(!!.... t) ~. ~ 
m aq m ap aq 

is a special case of (84). It is remarkable that no higher than 
second order derivatives appear in Lo(t )! 

The calculation of the operator Lf is similar. One 
obtains 

Lf(t) = V.E(t)[DxU(x)). (86) 

In the final step we calculate the operator Lq which is qua­
dratic in the momentay. This leads to major complications, 
but it turns out that the operator Lq(t) contains no higher 
order derivatives than a third order derivative in the mo­
mentaq. 

We will write Lq as the scalar product of two vectors 
with 63 = 216 components [(74)]: 

Lq= - a·(y® y® V). (87) 
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In order to find the commutators [K,. ]"Lq we make the an­
satz that there exist some vectors Win), Xln), yin), Zln) such 
that 

[K,. rLq = Wln).( y ® y ® V) + Xln)*·v 

+ yln)(y® V ® V) + Zln)·(v ® V ® V). (88) 

The vector X In)*ER6 is defined X rlo"==~,x 17k. The definition 
of the nth commutator [(16)] [K,.]nLq = [K,.]([K .. r-ILq) 
allows us to derive recursion relations for the vectors Win), 
Xln), yin), zln). 

Lemma: WIO) = - a, X (0) = 0, y(O) = 0, Z (0) = 0, 

Win + II = Wlnl..!' 

xln+ I) =Xlnlfl + wlnlE 

yin + II = ylnly + Wlnll/l 

Z In + I) = Z In)cp + WlnlE 

The 216 X 216 matrices y, Cp, E, I/I,..!' are defined 

..!' = C ® 1 ® 1 + 1 ® C ® 1 - 1 ® 1 ® ct, 
y= C® 1 ® 1 - 1 ® ct ® 1 - 1 ® 1 ® Ct, 

cp = - C t ® 1 ® 1 - 1 ® ct ® 1 - 1 ® 1 ® Ct, 

E=2C®1®1, 

1/1 = 41 ® C ® 1, 

fl= -1®I®Ct . 

(89) 

(90) 

1 is the 6 X 6 identity matrix. Wrlrn is symmetric in the first 
two indices Wrlrn = Wlz~ for all n = 0,1,2, .... 

Proof All these relations follow directly from the defi­
nition of xlnl, yin), Win), Zln) [(88)] and the definition. of the 
commutator [K,.]"[(16)]. 

The following equations are true for arbitrary vectors 
Xlnl, yin), Wlnl, zlnl with the only restriction that Wlnl is 
symmetric in the first two indices. 

W~1m = WIZ~· 
(1) [v.cy,xln)*.v] = (Xln)fl )*.V, 

(2) [V.Cy,Wln).(y® y® V)] = Wln)..!'.(y® y® V), 

(3) [v.cy,ylnl.(y®V® V)] = ylnly.(y®V®V), 

(91) 

(4) [V.Cy,Zln).(v EB V EB V)] = Zln)cp·(v ® V EB V), (92) 

(5) 
[v.CV,Wlnl.(y® y® V)] = (Wln)E)*.V + Wln)I/I.(y® V ® V), 

(6) [v·Cv,yln).(y® V ® V)] = yln)E.(V EB V ® V), 

(7) [v·Cv,Zlnl.(V ® V ® V)] = O. 

The proof of these equations is mostly straightforward. For 
instance, the first equation is 

[v.Cy,xlnl*.V] = I CapX~)· [Va yp,Vy ] 

a,p.l' 

= " C Xln)·v (- 0 ) = Xln)*( - et).v 
~aPl' a ap 

a,/3,l' 

= (Xlnl)*.V. 

The fifth equation is different since there are two different 
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types of terms: 

[v.Cv,Wln).(y@ y@ V)] 

= I CapW~l.{(Va[Vp,yy] + Y6 V.) 
u,{3,y,6,. 

+ (Vu,Yy]VpY6V. + YyVu [Vp 'Y6]V. 

+ Yy [Vu'Y6]VpV.}. 

By assumption W~2. = W~~. and [Ya,V{3] = -8ap , This 
gives the result 
[v.Cv,Wln).(y@ y@V)] = (Wln)E)*·V + Wln)I[I.(y@V@V), 

The proof of the other equations is similar. 
We define the vector valued function Wit ):R---+R216

, 

Wit )= I (( - t )nln!) WIn) (93) 
n=O 

and similarly X *(t), Y (t), and Z (t ). The recursion relations 
(89) for Win), X*ln), yIn), and zln) lead to the differential 
equations 

W(O) = - a, X(O) = 0, Y(O) = 0, Z(O) = 0, 

W(t)=-W(tj..!', 

X(t)= -X(t)D- W(t)E, 

Y(t) = - Y(t)r - Wit )1[1, 

Z(t)= -Z(t)</>-Y(t)E. 

(94) 

These differential equations can be integrated and the results 
are 

Wit) = - a exp( - t~), 

X(t) = a So' ds exp( - s~ )Eexp((s - t]D), 

Y(t) = a So' ds exp( - s~)1[1 exp([s - t] r), 

Z (t) = - So' dsY(s)E exp([s - t]<1». 

(95) 

With these expressions the final result for the operator L (t ) is 
with (84), (86), (88), (95): 

L(t) = - y·M -IE(t)Dx 

+ kTV.[E(t) - E( - t )]Dx 

+ V·E(t)[DxU(x)] (96) 

+ W(t).(y@y@V)+X*(t).V 

+ Y(t ).(y@V@V) + Zit )·(V@ V @V). 

This is the Liouville operator in the interaction picture. The 
quadratic term Lq caused all the additional terms. Even if 
they are not explicitly known, we will be able to show that 
they do not contribute to the first and second cumulants. 

D. First cumulant 

We calculate the cumulants under the assumption that 
initially the distribution in the momenta y is a Maxwell 
distribution, 

g( y) = 1 e - y,M - 'y/2kT. (97) 
(21TkT)3(det M)J/2 
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The first cumulant is according to (25) 

GII)(t) = f d 6yL(t)g(y). (98) 

We use expression (96) of L (t) and integrate by parts. The 
contribution at the boundaries vanish. The remaining terms 
are integrals over odd functions in y m' which vanish. The 
first cumulant is identically zero for all times t;;;'O, 

G(I)(t)P(t,x) = o. (99) 

E. Second cumulant 

The second cumulant gives the first nonvanishing 
contribution, 

G (2 )(t) = L ds J d 6yL(t)L(s)g(y) 

with [(96)] 

G(2)(t) = - fdS f d 6yy.M- IE(-t)Dx 

X [- y.M-IE( -s)Dx 

+ kTV.{E(s) - E( -s)}Dx 

+ V.E(s)[DxU(x)] + W(s).(y@ y@V) 

+ X*(s)·V + y(s)·(y@ V@ V)]g(y). 

(100) 

(101) 

The remaining terms of the productL (t)i (s)vanishafterinte­
grating by parts. The only term left from the operator L (t ) is 
- y·M -I E ( - t )Dx • Also the term Z (s)·(V @ V @ V) van­
ished after integrating by parts three times. 

At first we can show that the contribution due to the 
terms W (sH y ® y ® V), X *(s). V, and Y (s).( y ® V ® V) cancel 
each other. We will show that the following integral vanishes 
for k = 1,2, ... ,6 and all times s;;;.O: 

(102) 

+ Y(s).(y® V ® V)]g(y). 

We recall thatSd 6y Yi Yj g(y) = MijkT. Again integrating 
by parts (102) becomes 

Jds) = - I(kTWnmk(S)Mnm + Xnnds) - Ynnds)). 
n,m 

(103) 

The function Jds) may be written as 
Jk (s) = 'I.;; ~ oJ~n)( - sl" In!. For the constants J~n) one ob­
tains, according to (93), 

J~) = - L (kTW~~kMnm + X~~k - Y~~k)' (104) 
n,m 

The recursion relations (89) allow us to define J ~ ) in terms of 
J (I-I) 

k , 

J~) = I (kTW~1,:;',Mk'I,C;"'k +x~;;;,I,;"Cm'k 
I',k',m' 

YII-I) c-t ) + k'k'm' m'k' 

Comparing this expression with (103) shows 
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J (/I- - "J(/-IIC-t - (J(!-IIC-t) 
k - £.. k' k'k - k' 

k' 

The vector J ~I vanishes because X (01 = ylOI = 0 and 

l:k'!' W~)!'mMk'!' = - l:k,!,ak'!'mMk'l' 

(106) 

= -! Tr(Clml +M-Ic(mltM) = 0 [(65), (89)]. This 
shows that J~I = 0 for alll and k. Therefore 

Jds) = 0, s>O. (107) 

The integration of the remaining four terms in (101) is 
straightforward. One has to keep in mind that the matrix 
M -IE (t) is symmetric. 

The final result is 

!!.... P (t,x) ge G 121(t)P (t,x) 
dt 

= Dx·A (t)(Dx + kIT (Dx U(X)))P(t,X). (108) 

The time-dependent diffusion matrix is 

A(t)=kTC-I(I-e- tCM
'), t>O. (109) 

Equation (108) is the generalized Smoluchowski equation for 
coupled translational and rotational diffusion. Since we 
started with a Maxwell distribution at t = 0, the diffusion 
matrix A (t) is time dependent. Equation (108) includes as a 
special case the translational diffusion and the rotational dif­
fusion discussed in Ref. 1. The operator D x depends on the 
orientation a = (f/J,e,¢). 

(110) 

(Ill) 

.1. J '.1. I J e' J cos 'I' - + sm 'I' -- -- - cot sm ¢-
Je sin e Jf/J J¢ 

D = a . J I J J 
-sm ¢- + cos ¢---- -cot ecos¢-

Je sin e Jf/J J¢ 
J 
J¢ (112) 

The rotation R (f/J,e,¢) is defined in (33) and (34). The expres­
sion for Da follows from (59) and (63). Usually the friction 
tensor C is split into four 3 X 3 matrices. 

_ (CTT CTR ) C- . 
CRT CRR 

For axialsymmetric molecules it is easy to show that 
CTR = CRT = 0.8 In this case the diffusion equation is 

!..-P(t,q,a) = {Dq,.AT(Dq, + _I_[Dq, U(q,a)]) 
& kT 

( 113) 

(114) 

+ Da.Ar(Da + kIT [Da U(q,a)]) }p(t,q.a), 

with . 
At = kTC TTl (1 - e - tCrm ), 

AR = kTC RRI (1 - e - tCRRI '), t>O, 

The diffusion of translational and rotational degrees of free-
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dom is still coupled even if the potential U vanishes, since 
D q" dependsona. In Sec. V we will solve (114) in two dimen­
sions for U (q,a) = O. 

In Refs. 10 and II, different expressions for the opera­
tors corresponding to Dq , and Da , which are wrong in our 
opinion, are used. Instead of D a the operator 
J = - iqx(J/Jq) was used. J is, up to a constant factor, the 
quantum mechanical angular momentum operator for a ro­
tatingpoint particle. Both operators Do and Jhave the same 
commutator algebra since they are both infinitesimal gener­
ators of a representation ofSO(3). Do and J correspond to 
two different representations; see (136). A connection be­
tween J = - iqx(J/Jq) and the three Euler angles (f/J,e,¢) 
also used in Refs. 10 and II is not obvious. 

For axially symmetric particles one can factorize the 
angular dependence of P (t,q,f/J,e,¢) in ¢. The operator D;; is 
in general not equal to..:1 I r ~ I , the Laplace operator in 
spherical coordinates on the unit sphere. This is only true if 
we set J /J¢ = O. Ifwe consider only axial symmetric mole­
cules and do not distinguish between two orientations which 
differ only by a rotation about the axis of symmetry, then we 
may use D;; I ¢ =..:1 I r ~ I ; see (136). Reference 10 obtained 
wrong results by setting J 2 = ..:1. 

It is important to keep in mind that the operator D q' 

depends on the orientation. Dq , is the gradient along the 
body fixed coordinate axis. If Dq, is replaced by Dq = J/Jq 
one obtains wrong results. 10,11 The coupling of translational 
and rotational diffusion of the two dimensional model dis­
cussed in Sec. V is a consequence of the a dependence of D q' , 

only. 
These claims will be justified in detail in Sec, V. 

IV. N PARTICLE DIFFUSION 

We consider N particles moving in a fluid interacting 
via arbitrary forces. In general the N particle density 
P (t,x(\),x(2i, ... ,x(NI) is not the product of the distributions 
P (t,xlil), where xiii denotes the six coordinates of the ith parti­
cle Xiii = (qlI),alil), The N particles are correlated. The inter­
action energy is 

U (Xi I),x(2), ... ,xIN I), 

For an arbitrary observable 0 (xiI),Xi21, ... ,xINI) depending on 
the position and orientation of the particles 1 ",.,N the expec­
tation value is defined 

EO (t)== f dllxP(t,X)O (x) ( 115) 

with X=(XiI),xI21, ... ,XINI), The volume element dll
x 

is the 
product measure 

N 

dll x = II dqVldq~ldq~ldf/J Iii sin e lilde lild¢lil. (116) 
i= 1 

The objectives of this section is to derive the evolution 
equation for the N particle density P (t,x) based on the 
Kramers-Liouville equation for the N particle motion. For 
the complete description of the N particle dynamics all posi­
tions xiii and all momenta ylil are required, 
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(117) 

z(t )=(ZOI(t ),z<21(t ), ... ,z<NI(t )). 

These variables are connected with the canonical variables 
zc(t) through the transformation (37) and (44) applied on 
every single coordinate zll" i = 1, ... ,N, 

(118) 

Liouville's equation holds for the density fc (t,zc) since the 
determinant of the Jacobian matrix of the flux zc(t) is equal 
to 1 as a consequence of Hamilton's equation. 

('1/') _ aH ('Iil) _ aH (119) 
Xc k - a-( Iii) , Yc k - - --;;--( II') 

Yc k Xc k 

for k = 1,2, ... ,6 and i = 1,2, ... ,N. The Hamiltonian function 
is 

H(x, y) = ~ f ylil.Mlil-1 yI" + U(xllI , ... ,xINI). 
2 i~ I 

The matrix MIt) is the generalized inertia matrix (53) of the 
ith particle. Liouville's equation is 

~ fc(t,zc) + Zc . ~ fc(t,zc) = O. (120) at azc 

Zc is determined by (119). The expectation value of an ob­
servable 0 (zc) is obtained by 

(121) 

dlLc is the volume element in the phase space (Sx< XSyXN. 

(122) 

Instead of the canonical variables Zc we use again z. The 
transformation of the density Ic, the observable 0, and the 
measure dlLc are 

f(t,z)= fc (t,zc (z)), 

\ 
azc \ dlL= Det a; dz 

N 12 

= II sinO Iii II dz~l. 
i~ I k~ I 

The expectation value of the function 0 (z), 

EO (t ) = f dlL f(t,z)O (z), 

agrees with the definition (121). 

(123) 

(124) 

The Kramers-Liouville equation for the N particle 
problem has the form 

(125) 
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K II' is the Kramers operator acting on the ith particle, 

KII'==VII'·CII'[MII,-lyll' + k1VII,], 

VII'=~. 
ayl" 

(126) 

The Kramers operator is the direct sum of the individual 
operators K II' acting on the ith particle. The forces due to the 
fluid are completely random and not correlated at different 
positions. 14 The correlation matrix of all components of all 
random forces and random torques, which is a 6N X 6N ma­
trix, is the direct sum of the correlation matrices ell'. There­
fore Eq. (126) is justified. With L II" the Liouville operator 
acting on the ith particle, the Kramers-Liouville equation 
(125) is the sum of Nformally identical operators, 

~ f(t,z) = .f (L II' + K (I')f(t,z), 
at i~ I 

L Iii = - yI".MII,-IDxlil + Dxll, U(x).VI I
' 

_ all'.( ylil 6) yI" ® Viii). (127) 

All operators L Iii are connected through the potential U (x). 
Equation (127) contains the complete N body dynamics. 

Since [K II"L II'] = 0 for i:# j we have 

N 
= L e - IK")L II' e,K") 

i~ I 

(128) 

The operator D"(t ) are given in Eq. (96) after replacing z by 
zlil, and Mby Mlil. The evolution equation for the density J 
defined by f =e,K J is therefore 

a - N _ _ 

- f(t,z) = L L lil(t )f(t,z). (129) at i~ I 

Suppose the momentum distribution is Gaussian 
initially, 

N 

g( y) = II g( ylil), 
;= 1 

As in the one particle case the first cumulant vanishes. 

= jtl f d 6 
ylJ'j;IJ'(t)g(ylJ')P(t,x) = O. 

The second cumulant is 
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G(2)(t)P(t,x) = LdS f l( d 6
y(i1 It I mtl L(ll(t)[iml(s) jU, g(yVl)P(t,X) 

= L ds It, f iU, d 6yliIL(lI(t)L(lI(S) jU, g(ylll)P(t,X) 

+ L ds Itm f iU, d 6ylilL(ll(t )[iml(S) jU, g(yUI)P(t,X) 

= {It,GIZI(lI(t) + I~m L ds G(lI(lI(t) G llIl
m

l(s)}p(t,X). (132) 

The second term vanishes because all first cumulants 
G 1111/1 I = 1, ... ,N are zero. The remaining term is the sum of 
the cumulants calculated for the one particle dynamics. The 
N particle diffusion equation is 

a P( (II INI) ~ D A lil( ) - t,x , ... ,x = £... xli)'/1 t 
at i=' 

X (DXI/l + kIT Dx1i) U(XIIl, ... ,xINI)) 

X P (t,XIIl, ... ,xINI), 

A Ii)(t) = kTCIi) -, (1 - e - te",M'i) '). (133) 

This is the generalization of the Smoluchowski equation for 
N interacting translating and rotating particles. 

V. CORRELATIONS BETWEEN THE VARIABLES q AND a 

We consider the one particle diffusion equation (114). 
In general the positions and orientations are correlated. The 
correlations are not only caused by the potential U = U (x), 
x = (q,a) or by non vanishing elements of the matrix 
CTR = CkT' We will show that, if the positions q and the 
orientations a are uncorrelated at t = to there are in general 
correlations for t> to even if the potential vanishes and also 
CTR = O. 

A. Axially symmetric particles 
As an illustration we consider axially symmetric parti­

cles. In this case one can show that CTR = O. '5 Ifwe identify 
the axis of symmetry with the e; axis the matrices C TT' and 
C RR' are diagonal. 

o 
a 

o 

o 
b 

o 
(134) 

We assume that we know the distribution at time t = to, 
where to is large compared with the translational and rota­
tional relaxation time of the momenta. 

to>mllC iTlll and to>IIC RRI] II, 

~ P(t,q,a) = kT [aD~. + (a3 - a)(Dq')~ 
at 

+ bD; + (b3 - b )(Da)~ ]P(t,q,a) 

for t> to. (135) 

This equation is a special case oft 114) where we used expres­
sion ( 134) for the friction tensor. We also used A (t ) ~ k TC - I 

for f>to. 
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The differential operators (Dq. )Z, (Dq')~' D;, and (Da)~ 
are given by Eqs. (Ill) and (112). 

(Dq• f = Ll q , 

(Dq.); = aa . B (a) ~; Bij(a)=R3i(a)R3j(a), 
q aq 

Z a
z 

1 (a Z a Z ) 

(Da) = aze + sinze azq) + aZI/; (136) 

-2 cose ~~ cote~ 
sinze a¢; al/; + ae ' 

2 a2 

(Dab = aZI/;' 

Llq is the Laplace operator in Cartesian coordinates. 
We define the new density P (t,q,¢;,e), 

P(t,q,¢;,e) = f dl/; P(t,q,¢;,e,I/;). (137) 

Integrating Eq. (135) on both sides with respect to I/; leads to 

a [ a a - P (t,q,¢;,e) = kT aLlq + (a3 - a) - . B (¢;,e)-
~ ~ ~ 

+ bL1 I r= I k(t,q,¢;,e). (138) 

The matrix B (a) defined in Eq. (136) does not depend on 1/;. 

B (¢;,e) = (:~:: ~:::) ® (:~:: ~:::). 
cos e cos e 

(139) 

The contributions of Eq. (135) which contain a deriva.tive 
with respect to I/; vanish after integrating by parts. Therefore 
the operator D; reduces to Ll I r = , , the Laplace operator in 
spherical coordinates on the unit sphere. 

(140) 

We assume that the initial condition factorizes. For t > to the 
solution of (138) has the form 

P(to,q,¢;,e) = POt (q)POR (¢;,e), 

P(t,q,¢;,8)=PT(t,[PR])PR(t,¢;,8), t>to' (141) 

The function PT(t) is also a functional of the distribution 
P R (t ). P T(t ) and P R (t ) are probability densities, 
Sd 3q P(t,q, [PR ]) = 1 and Sd¢;d8 sin 8PR (t,¢;,e) = 1 for all 
times t> to' The boundary conditions are: P T(t,q, [P R ]) = 0 
ifqi = 00 for some i = 1,2,3. Substituting(141)intoEq. (138) 
and integrating with respect to ¢; and e (using the weight 
sin 8) leads to Eq. (142). Similarly one obtains (143) by inte-
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grating with respect to q. 

~PT(t,q,[PR]) = kT{aLl q + (a 3 - a) 
at 

xL fd,p sin edeBij(,p,e)p R (t,,p,e) ~~} 
iJ aqi aqj 

xPT(t,q,[PR ]), (142) 

~ P R (t,,p,e ) = kTM I P R (t,,p,e ) for t'~to· 
at r~ I 

(143) 

The second equation describes the "Brownian motion on the 
unit sphere." The eigenfunction of Ll I r ~ I are the spherical 
harmonics Ylm (e,,p ). Substituting a solution P R (t,,p,e ) of 
(143) into Eq. (142) one obtains an expression which is for­
mally a diffusion equation with time-dependent diffusion co­
efficients. The off diagonal elements of the diffusion matrix 
vanish if the distribution P R (t,,p,e ) is uniform. 

Similarly, one can show that for arbitrary molecules 
with CTR = o a solution of the form (141) (including tP) exists, 
if the positions and orientations are uncorrelated at time 
t = to and if U = o. 

B. Diffusion in two dimensions 

In two dimensions the diffusion equation without exter­
nal potential can be solved for arbitrary initial conditions. 
Equation (108) reduces to 

a 
- P(t,ql,q2',p) = AP(t,ql,q2',p), 
at 

A = (~')'A (,p) (ai') + kTy ~:, 
aq2 aq2 

(144) 

A (,p) = kT (a cos
2

,p + f3 sin
2

,p 
( f3 - a) sin ,p cos ,p 

( f3 - a) sin ,p cos ,p ) 
a sin2 ,p + f3 cos2 ,p . 

(145) 

kTa, kTf3, and kTy are the diffusion constants correspond­
ing to the degrees of freedom ql' q2, and,p. We assume that 
a> f3. We use the following identities to simplify the matrix 
A (,p): 

a cos2 ,p + f3 sin2 ,p = a + f3 + a - f3 cos 2,p, 
2 2 

a sin2 ,p + f3 cos2,p = a + f3 _ a - f3 cos 2¢>, (146) 
2 2 

2 sin ,p cos,p = sin 2,p, 

0) + kT€ ( co~ 2,p 
1 - sm 2,p 

- sin 2,p) . 
- cos 2,p 

(147) 

8 is the average translational diffusion constant and € is a 
measure for the asymmetry of the particle. 

8==. a + f3, €= a - f3 . 
2 2 

(148) 
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Without solving (144) explicitly it is already possible to make 
some statements about the lowest moments of ql' q2, and,p. 
One obtains the following differential equations for the ex­
pectation values ( ... ), = fdq, dq2 d,p ... P(t,ql,q2',p): 

d 
dt (ql), = 0, 

!!. (q~), = 2kT8 + 2kT€(cos 2,p )" 
dt 

!!. (q Iq2), = - 2kT€(sin 2,p )" 
dt 

!!.(cos2,p), = -4ykT(cos2,p)" 
dt 

!!. (sin 2,p ), = - 4ykT (sin 2,p ) I' 
dt 

This leads to 

(cos 2,p ) I = e - 4yk Tt (cos 2,p ) 10 ' 

(149) 

(qi>, = 2kT8t + ;y (1 - e- 4ykTt)(cos 2,p )'0 + (qi>,o' 

(150) 

(qlq2), = ~y€ (1 - e- 4ykTt )(sin 2¢> )'0 + (qlq2),o' 

The calculation of arbitrary expectation values (0) I' 
0= 0(ql,q2',p) can be reduced to the problem of finding the 
eigenvectors and eigenvalues of the diffusion operator A in 
Eq. (144). 

(151) 

For the symmetric case a = f3 the solutions of (151) are 

./,' (q q A.) = _1_..!.. eik,q, eik,q, sin(lrl- ) 'f'k,k,t I' 2,'f' 1TI/2 L 'f' , 

(152) 

~ ( A.) 1 1 ~ ~ 'f'k,k,/ ql,q2,'f' = ----u2 - e ,q, e ,q, cos(l,p ). 
1T L 

We choose a box oflength L and assume periodic boundary 
conditions, 

(153) 

The possible values for k
" 

k 2, and I are 

2n1T 2m1T 
k, = ± T' k2= ± T' n,mEN 

(154) 

/=0,1,2, .... 

In the general case a > f3 we make the ansatz that the eigen­
functions can be written 

tPk,k,/(ql,q2',p) = )12 ~ eik,q, eik,q'gk,k,/(,p ). (155) 

One obtains the following differential equation for the un­
known functiongk,k,M) [(144), (147), (151)]: 

U. Steiger and R. F. Fox 307 

Downloaded 24 Jul 2012 to 130.207.50.37. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



[ - o(k i + k ~) - E(k i - k ~) cos 2cp 

+ 2Eklk2 sin2cp + r a~2 2 - AZ';I ] gk,k,M ) = O. 

(156) 

We define the complex wavenumber k', 

k '=:=k , + ik2' 
(157) 

The exponentials can be combined to cos(2[cp + tP)). Equa­
tion (158) is equivalent to Mathieu's equation. 16 

d 
- Y/(Z) + (al(r) - 2r COS2zlY/(Z) = 0, 
dz 

(k~ + k~)(a -p) 
r= -------

4r 

(159) 

(160) 

The eigenvalues al(r) of Mathieu's equation are negative for 
certain values of r and 1,16 but the eigenvalues Ak k I are al-
ways less or equal to zero for all klk2' and I. ' , 

Equation (159) has a complete set of orthogonal solu­
tions cel(r,z) and sel(r,z) with the corresponding eigenvalues 
denoted by al(r) and bl(r).16 The eigenfunctions of (151) are 

1 1 'k 'k 
tPk,k,/(ql,q2'CP) = 1T1/2 Le' ,q'e' ,q'sel (r,cp+arctan(k2Iktl) 

1 1 'k 'k 
tPk,k,/(ql,q2'CP) = 1T1/2 Le' ,q'e' ,q'cel (r,cp + arctan(k2Iktl)· 

(161) 

since {tPk,k,l,tPk,k,/} is a complete set of orthogonal eigen­
functions of the diffusion operator (151), the expectation val­
ue (0), can be found by 

(0), = J dq 1 dq2dcpP(t,q\,q2,CP)0(q\,q2'CP) 

'" ,t"" P 0 = L e ,. k,k,1 k,k,1 (162) 
k,k,! 

,t' + I e ',kI P k,k,1 0 k,k,[' 
k,k,1 

The coefficients Ok,k,I' 0 k,k,I' Pk,k,I' P k,k,1 are obtained from 
o (ql,q2'CP) and the initial distribution P (to,ql,q2'CP ). 
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Ok,k,1 = J dq l dq2 dCPtPt,k,dQI,q2,CP)0(ql,q2'CP) 

=(tPk,k,!'O), 

o k,k,1 = (tPk,k,/'O), 

Pk,k,1 = (P (to),tPk,k,l)' 

P k,k,1 = (P (to),tPk,k,I)' 

(163) 

As an illustration we consider the following two observables: 

OS(q\,cp )=sin(k,q\)se\(r,cp), 
(164) 

OC(ql'cp )=sin(k,qtlcedr,cp), 

withk , = 21TILandr = ~(a - P )/rL 2. Weassumethatthe 
asymmetry is small. In this case r( 1 and the Mathieu func­
tions se I and ce I are approximately 

r 
cedr,cp )~cos(cp) - - cos(3cp), 

8 

se\(r,cp )~sin(cp) - ~ sin(3cp). 
8 

The corresponding eigenvalues are 

al(r)~ 1 + r, 

b,(r)~ 1 - r. 

The eigenvalues A ± k,OI and A '± k,O\ are 

A±k,O\ ~ - kT(r+ t2 (3a +P)). 

A '±k,OI ~ - kT(r + t2 (a + 3P)). 

( 165) 

(166) 

(167) 

and for the expectation values of 0 sand 0' one obtains 

(0'), ~ce- kTll'+ (rr'IL'il3a +{3))', 

(168) 

(0 "), ~c'e - kTll' + (rr'IL 'lia + WII'. 

The constants c and c' can be written c = (0 c,P (to)) and 
c' = (0 ",P (to)). 

The state 0 C decays faster since we assumed a > p. a corre­
sponds to the diffusion along the e; axis of the molecule. In 
the state 0 C the molecule axis e; is mainly parallel to the e I 
direction of the laboratory frame; in the state 0 se; is mainly 
parallel to the e2 axis. The average speed of the molecules in 
state 0 C is bigger in the direction e I; e I is also the direction of 
the spatial inhomogenity. Therefore 0 C decays faster than 
0". This example is typical for the type of coupling of q \,q2' 
and cp, which occurs in the translational and rotational diffu­
sion if the otential Uvanishes and also CTR = O. 

VI. CONCLUDING REMARKS 

We have shown that a "contraction of the description" 
is achieved when a Kramers-Liouville process is averaged 
with respect to its momenta variables. The second cumulant 
of an ordered time evolution cumulant expansion yields the 
generalized Smoluchowski equation as the contracted de-
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scription. We have examined the details of the dynamical 
operator algera generated by the contraction procedure for 
translational and rotational degrees of freedom, and for as 
many as N distinct particles. 

A more thorough description of the higher order cumu­
lants, shown to be small here, will appear in a forthcoming 
paper. 
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