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Coupled translational and rotational diffusion in liquids

Ulrich Steiger and Ronald F. Fox

School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332

{(Received 29 January 1981; accepted for publication 11 August 1981)

The equations for coupled translational and rotational diffusion of asymmetric molecules
immersed in a fluid are obtained. The method used begins with the Kramers—Liouville equation
and leads to the generalized Smoluchowski equation for diffusion in the presence of potentials.
Both external potentials and intermolecular potentials are considered. The contraction of the
description from the Kramers—Liouville equation to the Smoluchowski equation is achieved by
using a combination of operator calculus and cumulants. Explicit solutions to these equations are
obtained for the two-dimensional case. Comparison of our results with earlier literature is also

presented.

PACS numbers: 05.40. + j, 51.90. +r

|. INTRODUCTION

In this paper we study the translational and rotational
motion of molecules immersed in a fluid. The molecules ex-
perience translational and rotational Brownian motion as a
result of the bombardment by fluid molecules. The descrip-
tion of this essentially stochastic process in terms of the
probability-distribution function P (z,x) leads to a diffusion
equation

%P(I,x) = %: a;(x)

2

a
O0X,0X;

=AP(1,x) (1)

for all times ¢>0 and all points x, x = {¢,,4,,9+,9.6,¥).

q = {4,,92,q,) describe the position and the Euler angles

a = (¢,0,¢) fix the orientation. The differential operator 4 is
a diffusion operator. All eigenvalues of the symmetric ma-
trix [a,(x)] are non-negative. For translational diffusion 4
is simply a diffusion constant muitiplied by the Laplace op-
erator. Favro' derived the diffusion equation for rotational
Brownian motion and was able to solve it for axial symmet-
ric molecules using the fact that the diffusion operator A
has the same form as the quantum mechanical Hamilton
operator for a rigid body,” the properties of which are well
known. In general the translational and rotational motions
are coupled in a complicated way.

Already 50 years ago, Kolmogorov showed that under
very general conditions a Markov process defined in terms of
the transition probability F (z,x,x')dx’ of finding a particle
initially at point x in the infinitesimal small set dx" after a
lapse of time ¢, leads to a diffusion equation. The probability
density

a
Ptx) + Z b;(x) EP(AX)

Pltx)= j F(t,x",x)P(0,x") dx’ (2)

satisfies Eq. (1). S, is the space containing all points x. P (0,x)
is the initial distribution at time ¢ = 0.

The concept of a Markov process is an idealization of
the underlying physical reality. For a complete dynamical
description, it is necessary to consider the distribution func-
tion £, (¢,x,, y.) defined on the phase space S, XS, consist-
ing of all points (x., .} with x, = (¢,,42,4+,¢,6,¥) and the
canonically conjugate momenta y, = (p, Py P Po» Par Py )-

296 J. Math. Phys. 23(2), February 1982

0022-2488/82/020296-14$02.50

The distribution function £, (#,x., y.) satisfies the Kramers—
Liouville equation®*

—;%fc(t,xc,yc) = L+ K)fltxe, p.). 3)

L is Liouville's operator and K denotes Kramers operator,
which describes the effect of all random forces acting on the
Brownian particle. If Eq. (3) can be solved for some initial
distribution £.(0,x., y. ) then it is possible to find an operator
G (t,x.) such that the averaged distribution P (¢,x) defined by

Plix, )sf A @)
SV(
fulfills the first order differential equation in time:
gf’(nxc) = Gltx,)Plex,) (5)

In general nothing is gained, since G (£,x,} might be a very
complicated operator. We will use the cumulant expan-
sion>® to approximate the operator G (£,x,).

Gltx)= S G"ix,) (6)
n=1

It turns out, that the diffusion operator 4 is the first
nonvanishing term in the expansion {6). Equation (1}, where
A is now replaced by the second cumulant G *(z,x,)
[G"(t,x.) = 0], is a very good approximation of (5). K de-
scribes the time evolution of the distribution of the momenta
due to random forces. The momenta y, (¢ ) can be considered
as random variables, which very quickly become indepen-
dent. y_(t)is independent of y, (¢ + At ) if the lapse of time At
is large compared with the correlation time 7. It can be
shown,’ that the nth cumulant is proportional to

G("IN'?" - l. (7)

#is a dimensionless quantity. f=r, /7. 7 is some typical mac-
roscopic time unit.

Intuitively, it is clear that we obtain a Markov process
on S, described by (1) if the correlation time 7, of the mo-
menta y, (¢ } becomes very small. It is the short correlation
time which makes the higher order contributions small.

The idea of deriving the diffusion operator 4 as the low-
est order of a cumulant expansion (6) is not new. The actual
calculation of the operators 4,G ..., is complicated by the

© 1982 American Institute of Physics 296



nonlinearity of the equation of motion for a rigid body. The
time derivatives of the angular momentum L ' and transla-
tional momentum p’ expressed in an orthogonal coordinate
frame attached to the moving particle are

L'=L'XI7'L'+ N/,

(8)
p=pXI"'L'+F'
N'and F’ are the torques and the forces acting on the parti-
cle. The prime denotes vectors in the body fixed coordinate
frame. I is the tensor of inertia. It is necessary to choose body
fixed coordinates for both L ' and p’ since otherwise the fric-
tion tensor C depends on the orientation [see (70)].%

The purpose of this work is to analyze the rotational
and translational diffusion in the most general case using a
mathematically transparent method. We will show that

(i) The generalized Smoluchowski equation is the lowest
order contribution of G (t,x,). Starting off with a Maxwell
distribution at time ¢ = 0 the diffusion tensor is time depen-
dent. For ¢ < 7, the diffusion tensor depends on the mass and
the moments of inertia, and becomes stationary for t»7,.

(i1) The diffusion equation couples the translational and
rotational degrees of freedom even in the simplest case.® As
an illustration, the two dimensional diffusion equation is
solved. The solutions are obtained in terms of exponential
and Mathieu functions. (Sec. V).

(iii) A suspension of & interacting Brownian particles
leads to a diffusion equation for the N particle density
PtxVx2,.. xV), (Sec. IV).

In Sec. II the operator calculus used later is introduced
and applied to the translational motion. Section I1I treats
coupled translational and rotational diffusion.

Il. OPERATOR CALCULUS, TRANSLATIONAL
DIFFUSION

The starting point of the theory is the Kramers-Liou-
ville equation.**

%f(nq, p)=Bfltg,p) = L +K) (1.4, p) )

g are the coordinates describing the position, ¢ = (¢,,¢.,¢5)
and p are the conjugate momenta. Liouville’s operator is

d au 4
Lf= —m ™ 'po-—f+ —.—f 10
P 5 f % (10)
U denotes the potential. Kramers operator is
Kf=ai-(m“p+kTi)f, (11)
ap ap
It is convenient® to work in the “interaction picture”
f=e*F. (12)

The exponential e’ is defined by a formal power series in tK
and acts on the new function fwhich is assumed to be smooth
enough, such that the series e’ f=3=_ [(1K )"/n!] f con-
verges. The smoother fthe smaller the contribution of K"
which is a differential operator of order 2» in the variable p.
The time evolution for f'is governed by the KramersLiou-
ville equation in the “interaction picture”.
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J - o~ .
Ef:e*’KLe”‘f——_—L(t)f. (13)
Theoperator L (¢ )canbe expressed in terms of the differential
operators d/dq and d/dp using the identity
e” KL K =~ 1K1 (14)
The proof of this equation is found in Ref. 5. The operator on

the right hand side is by definition

e Kl = 4 i [K, 1L (- t)/nll. (15)

n=1

The commutators [K,-]"L can be defined by recursion,
(K, ]'L=[K,L],
(K, PPL=[K,K.L]], (16)
[K"]nL E[K’]([K’]" B IL )

We can calculate all terms in the infinite sum (15). Applying
the commutator algebra discussed in Ref. 3 leads to

~ _ J p d
L= - ‘“/m)f—.(—~ + kT—)
) ¢ dg \m ap
ad au d
+e‘“/’"”—-(—- + —) 17
dp \ g dq )

In Sec. III the corresponding expression for translational
and rotational motion is derived in great detail.
Formally, the solution of (13) can be written

fley=E(t )f'OEZ exp JO lds L (s)f;, (18)

in which T exp is the time ordered exponential.® £; is the

initial distribution. The time ordered exponential must be
used because L (¢,) does not commute with L (t,)ift, 5¢,. We
would like to derive the time evolution for the averaged dis-
tribution P (t,q),

Pltg)= f d'pfitg,p) = f d*p e*Fit.q.p)

_ fd p fltag, pi={F(1.0)). (19)

The third equality can be proved by expanding the exponen-
tial ', After integrating by parts, all but the lowest order
term, which is £, vanish. We can assume that

f(tvq’p)lp,: - =0.

_ We write the initial condition
(0.9, p)=/fo(g, p) = flg, p) in the form

Solg, p) = gla, P)Po(q),

(20)
Pylg) = <f0(4)>
With Egs. (18)—(20) one obtains
Plrg)= f d*p fitg, p)
- fd p E(t glg, pIPog) 1)

=(E (1)), Polg)-
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The operator (E (t)), is obtained by muitiplying glg, p) from
the left with E (¢ ) and integrating over the momenta p. Differ-
entiating Eq. (21) with respect to ¢ gives the time evolution
equation

9 plrg) = (g;w(z >>g)<E(r Do Pltg)

at
We expect that the inverse (E (t)), ' exists at least for small
times. It may be obtained by the Neumann series®
A7'=Z2=_.(1 — A} The operator

G(nq)z(;f; (B, KB,

(22)

(23)
a%P(t,q) = G (t,g)Plt,g),

depends on g sinceg(q, p)is a function on g and p. But in most
physical applications the initial distribution of the momenta
does not depend on the position ¢. In this case the operator G
depends only on .

In order to calculate G (¢ ) we use the cumulant expan-
sion,>”” which is obtained by reordering the expression

G(t)= n}::0<f(z)?’ exp LI f(s)ds>g<l - ?’ exp J:Ij(s)ds>n

3 24)
Git)=3 GV

=1
Compare (18), (22}, (23). G’ contains all terms of the sum in
(24) which are of order / in the operator L (s). The two lowest
order terms are

GMe)= (L)), = fa”p L(t)glp)

6ot = [ A EL), - j s (L),
25)

= fo ds fd 3p L(t)L (s)g( p)

~[[as [aw Lo [awLigp

The higher order terms are given in Sec. VI.
We assume that the distribution in the momenta is ini-
tially a Maxwell distribution

glp) = (2emkT)>* exp( — p*/2mkT). (26)

In this case, it is easy to verify that the first cumulant G 'V(¢)
vanishes for all times 7>0. The second cumulant is

ﬂ_a__ (_l_ﬂ + i)(l — e la/miy (27)
a Jdq kT 8q dq

The time evolution equation (23} is, to second order in E, the

Smoluchowski equation with time-dependent diffusion

“constant”,

Gty =

Ar)= KL (1 —e-tarmn),

a
d d 1 U 8)
—Pltgl= — - A(t)|—= — 1 Pltg). (28
5P = 4 ()(kT o o) Pl 08
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At t = 0 the diffusion constant vanishes since by assumption
the distribution in p was given by a symmetric function, the
Maxwell distribution. After a short time of order m/a the
particles start moving until finally the Boltzmann distribu-
tion is reached. In order to illustrate the meaning of the time-
dependent diffusion constant A {¢) we calculate the first and
second cumulant with the initial distribution

g(p) = 8( p — p,). All particles have the same momentum p,
at ¢ = 0. In this case the first cumulant does not vanish:

Gl = —e=mipm=t. L, (29)
9q
G@ = 1 (e~ armi _ p—2armyy
a
e ()]
X —{—" —kT|—
{m(c')q Po dg
1 a (aU d
+ — l—e“‘“/’"”)—-(—— +kT—). 30
a( dg \dq dq (30)

In the limit #— o both expressions (27), and {29) and {30)
agree, as they should. The operator G (¢ )isindependent of the
initial condition for large times. The larger a/m, the faster
G (t) approaches the constant expression. For very large val-
ues of a/m the dynamics governed by (23} approaches a
Markov process. Formally the Markovian limit is obtained
by first rescaling the time 7 = a ™ 't and taking the limit
a— co. In this limit all higher cumulants vanish since they
are proportional to higher powers of 1/a.

1. COUPLED TRANSLATIONAL AND ROTATIONAL
DIFFUSION

We consider particles of arbitrary shape in a fluid. The
friction forces depend on the orientation. We will describe a
proper choice for the variables. In Refs. 10 and 11 inconsis-
tent definitions which lead to wrong results are used.

The position and orientation of each particle is deter-
mined by the six variables comprised in the sextuple x,

X = (‘11’42’43,'15:9»1//)- (31)

Qs an arbitrary origin and C the center of mass. ¢,,¢,,¢; are
the coordinates of the vector OC in the laboratory frame
where é,,é,,6, are three arbitrary orthogonal vectors of
length one such that &, X &, = é,, et cyclic. It is convenient,
to choose the Euler angles a = (4,6,1) to describe the orien-
tation.'? We will also use the body fixed coordinate frame
é;,65,é; such that the tensor of inertia / becomes diagonal.
The components of the vector &/ expressed in the laboratory
fixed frame é,,é,,é, are

(€), =R ;(4,0,9),

R (¢:6v¢)E [Rlz (¢’9’¢)] (32)
The Euler angles are defined by
R (#,0,Y}=R.($ |R (0 )R, (4). (33)

R, (¢ ) and R, (¢) are counterclockwise rotations of a vector
about the é, axis. R, (@) is a rotation about the &, axis.
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R.(¢)=e"",

R, (0) =", (34)
R.(¥)=e""

The 3 X 3 matrices T,T,,T are defined
(Ti)im = €itm- (35)

€., is the completely antisymmetric Levi-Civita tensor. Be-
sides the position x (31) we need the momenta p,

y=p},psp3,L1,L5.L5) (36)

Both the translational momenta p’ and the angular mo-
menta L ' are expressed in the body fixed coordinate frame.
The tensor of inertia and the friction tensor depend only on
the mass distribution and shape of the particle. They are
independent of the orientation if body fixed coordinates are
used. According to (32) the vector p’ and p=mg, where m is
the mass and the dot denotes the time derivative, are related
in the following way:

P =R"¢.6,4)p
=R ~'($.0,¥)p. (37)

The angular momentum L ' is the product of the angular
velocity @’ and the tensor of inertia 7,

L'=lv. {38)
With Eq. (37) the skewsymmetric angular velocity matrix
12 '3 expressed in the body fixed frame is

2=R"'R (39)
The matrix {2 and the pseudovector o’ are related:

0= oT, (40)

i=1
In order to obtain {2 in terms of the Euler angles a = (¢,0,¢)
and their time derivatives we substitute in (39) for the rota-
tion R the expressions (33) and (34). Evaluating the time de-
rivative in (39) and multiplying R from the left with R ~
leads to

0 = ¢ e '/’Txe — 0T, T3e9T|e'/’TJ
+60e VIT '™ 4 YT, (41)

We compare this expression with (40). Equation (41) can be
simplified using the commutator algebra (77,7} ]
= €, T,.»'? One obtains for the angular velocity o’

®), = ¢ sin G sin ¢ + 6 cos ¢,

)}, = ¢ sin @ cos ¥ — O sin ¢, (42)

0y, =¢+ é cos 6.
Now we are able to describe the motion of the particle com-
pletely. The phase space S, XS, consists of all pairsz = (x, y)
defined by (31), (36), (37), (38), and (42).

A. Liouville’s equation

The motion of the rigid body is a solution of the canoni-
cal equations®

299 J. Math. Phys., Vol. 23, No. 2, February 1982

_6H . OH
)

Ve = ax

x

’

C

(43
1 i p—ty
Hirey) = 5= ||pIP 4L ~'L 4 Ul

The canonical conjugate variables x, and y, are x, = x and

Yo ={(P1, P2 P2 Pg» Pgs Py)- The canonical conjugate mo-

menta for the angle variables a = (y,6,¢) are given by

Po =9T /da with T=\L "1 ~'L".
Ps=L{sin@sinyy+L;sinfcosyy+ L;cosb,
pe=Licosyy—Ljsing, (44)
p'=Lj;.

For every solution z, (¢ )=(x_(t), y. (t)) of Eq. (43) Liouville’s

theorem holds,

9 .9 _
-a_tf;(t’ZC) + 2. ;;Zf;'(t’zc) =0. (45)

It would be more convenient to express the particle density
distribution f, as a function of the variables z = (x, y) defined
earlier, instead of as a function of z, = (x_, y.). We define a
new density

fltz)=f (12 (2)). (46)
With the following identities, one obtains the Liouville equa-
tion {48) for the new density f(t,z).

Jd _ dz d

oz, dz, 3z

. d d dz

= —z(t)=— t)) = , 47
== z(t) dtl(zc( ) 2. z, (47)
oz 8zc

e =1

9z, 9z

1,, is the 12 dimensional identity matrix. We get
d d
atf( 2) azf( ) (48)

The transformation z, = z_(z) is given by Egs. (37) and (44).
The Jacobian determinant is — siné. For any observable

O = O (z,) the expectation value EOQ =§dz Oz} f.(t,z,) can
also be expressed in the new variables z = (¢,a, p',L '),

( )
c
aZ

= fd 3qd¢d sin Odyd > p'd L’ (49)

EO = sz

Oz (2)f(1.2)

X 01{g,9,.0,¢,p",.L") f(t,4:,0,¢,p',.L").

Equations (45) and (48) are formally the same but the mean-
ing of the differential operators 4/9z, and d/3z are very
different.

a a ad d a 3)
=(Z.%), £=(&.9) 50
dz, (axc ay. ) 0z ( dx dy (50

The gradient d/9x, is evaluated with the canonical conju-
gate momenta y. = (py, P, P3, Py, Py) fixed. When 3/3x op-
erates, the momenta y = ( py, p3, p;.L },L ) are fixed.
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J [ a 3
(—?—x—c- -a_q: 92.425:0,¥ T aw 91:92:956,6 o .]’

Py P2 P Pgr Por Py Py P2y P3: Pow Por Py

J _ A J
3; aq 22.0008,6,¢ A 3_1/1_ 91192193,8,0 T ]

iP5 PLLLSLS 2 P2 Py L L3LS

(51)
Rather than using {(47) to calculate Z we got back to Euler’s
equation.
a % d d
x dt 9x,

(52)

<

The Lagrange function .¥ is ¥ = p'M ~'y — U(x,). M is

the generalized inertia matrix

ml, 0) (53)
M= ( 0o I/
M is a symmetric 6 X 6 matrix. Keeping in mind that
y=yx.,x.) Eq. (32) can be written
d _, Oy a9y, 9UK,)
M —yIM ' 4 —— =0, 54
a7 w7 e T ek (54
The derivatives dy/dx, and dy/dx, are 6 X 6 matrices. Eval-
uating the time derivative gives |
R ($,6,¢) 0
1 1
— i ——
A7'= sin ny sinecos‘/}
0 cos Y —siny
—cot @sin ¢ —cot B cos ¢

We can write the matrix 4 and B in block form,

= (% 4) =G 5)
0o 4/ s BJ’
BA—I:@IR BzA'“')_ (60}
R B!
Comparison of (37} and (44) with (58) gives
y=MA(x)%,. (61

With (61) the matrix B can be expressed in terms of 4.

= (d /dt)4 — (3/9x_)Ax,. The matrix B R is therefore
equalto((d /dt )R ~')R = — £2.Bydirect calculation wefind
that also B,4’'~'is equal to — (2. The matrix B, vanishes.
This leads to

d .
£ — YR ;! ,A’f‘)
Bd '=— — (aajg:, t xd g ' (62)
0 0
We define the differential operator D,
D=4 9 (63)
ax
According to (57) p is
. Ile
y=—puw + (7). (64
xw
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-1 O *(
—_ M
ey +y

(x,)=0.

Ay

ny _ 1 _@_ )
dr 9x, ax,

+ (55)

9x.
The following definitions are useful:

.

Am—-z leax",

m=1

(56)

Bu=3 M,

m=1

(d Ww aym)

dt ox,, %)

Equation (54) can be solved for y. The result is

aU (x) e
ox

dU /dx = dU /dx, in agreement with (51) since the potential
U does not depend on the momenta. From the transforma-
tion y = y(x_,x_) given by (37) and (44) one obtains for the
matrix A

=~ —ytB4 . (57)

R ~'(¢,0,%) 0
sinf siny cosy O
A= ] 58
0 sind cosy —~singy 0 (58)
cosé 0 1
The inverses of this matrix is
0
0 (59)

[
We used the fact that the following contribution vanishes:

. d s
ZR n §QI a (R ik }qk)
i da

f
1 a
=—2’z’;5— i 'GR K ‘4, )
a

1 1

=——|R" ——1iglI*=0.
2 5a i 5 a 4l
Equation (64) is Euler’s equatlon of motion for a rigid
body. The differential operator D, is explicitly given by Egs.
(111)and (112).In the following it is more convenient to write
the last term in Eq. {64) as a quadratic form in y,

911" =

(y)n = (D U[x )n zalmnylym’
Qi = %(C[")M —1 + M — lC n)?)]m’
(65)
(O TH)
C(ni _ ,
0 0
0 0
(n+3) _ — .
C = (0 Tn)’ n=123
U. Steiger and R. F. Fox 300



The tensor a,,,, is defined such that a,,,, = a,,,,. With these
definitions we obtain Licuville’s equation (48} in the form we
will use it in the following.

2 fixn = { oM "D, +D,Ut)Y

- zalmnylymvn f(t’x’y)' (66)

Lm,n

The operator x-d/dx in (48) and (51) is equal to yM ~'-D,
since y = MA (x)x [(61),(63)]. V denotes the gradient with re-
spect to y with components V,=d/dy,,.

B. Kramers-Liouville equation

The motion of the particle is influenced by an external
potential U and a *‘Brownian fluid,” which is composed of
molecules which exert fluctuating forces and torques,

Rit)=(F(e)N(t). (67)

In the absence of an external potential the equation of mo-
tion is

y= - Jl ds (¢ — siis) + h {¢). (68)

For a derivation of the generalized Langevin equation (68)
see Ref. 14. The friction tensor I” (¢ ) is proportional to the
correlation of the fluctuating forces 4 (),

1 ,~ -
r)= T (R{0)A(t)). (69)

The symmetric tensor I (¢ ) is independent of the momenta y
for heavy solute mofecules. In the following we will use the
“Markovian limit”.

y=—~Cy+hit), czrr(s)ds. (70)

The following discussion can be generalized simply by re-
placing the 6 X 6 matrix C with the corresponding expression
in (68) in all equations.

In Ref. 14, Eq. (68} was derived from a linearized set of
the equation of motion. Therefore one does not have to dis-
tinguish between the laboratory and the body fixed coordi-
nate frames. The difference consists of quadratic terms
L’'Xw' and p' X ®'. The idea is that over a short time of the
order of the relaxation time both frames do not differ very
much. After combining the stochastic equation (70) with
Newton’s equation, we can follow the orbit over an arbitrary
long time and must therefore distinguish between both co-
ordinate frames. The equation of motion containing the
forces due to the fluid and the external forces is

/Xa)!

'Xco’) +hit) (71)

y=—av+0,U+ (7

In Refs. 10 and 11 the term p’ X " is omitted. The general-
ization of Liouville’s equation including stochastic forces
can be obtained from (71).7 The result is the Kramers-Liou-
ville equation
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a p—
Ef—(L+K]f,

Lf= —yM "D, f+ DUV~ 3 @y ¥ Va S (12)

Lm,n
Kf=V.C(M 'y +kTV\f.

The operator X is known as Kramers operator.

C. The operator

In the translational case it proved very useful to go to
the “interaction picture”.

f=e*f,
Lity=e *LeX =L+ 3 (KL (‘—“n"—’) . (73)

n=1

The operator L consists of three terms.
L=L,+L,+L,

L,= ",V’Mlex’
(74)

L,=(D.U)V,

Lq = — zalmnyl ymvn'

Imn
The calculation of the operators fo and L, - does not pose any
d_jfﬁculties. However, for L, the situation is different since
L, contains quadratic terms in ¢. The commutators with X
become more complicated.

All operators needed in (74) are contained in the algebra
generated by x;, v,,,V,,,379x,. The position and momenta
are independent. From the definition (51) we obtain
[V,.x,] =0and [d/3x,, y,, | = 0. The partial derivative
d/dx, is evaluated with the momenta y = ( p’,L ') held con-
stant. The differential operator (D, ), (63) also commutes
with y,, and V,, for all components i,m,n. The only nonvan-
ishing commutator needed for the calculation of Lis

Ve Vml1=6,., nm=1,.6 (75)
The operator Ly(f)is given by the infinite sum
Lyt)=Lo+ 27 [K,-]"Lo({ —2)"/n!). In order to sim-
plify the notation we introduce the matrices C and Cand the
operator D,

C=CM~', C=CkT, D.=—M"'D,. (76)
Kramers operator becomes
K=V.Cy +V.CV. (77)

Theoperator Lis L, = y-D_ . The first time-dependent term
in the expression for Lt ) is equal to — ¢[K,L,]. This com-
mutator is

[K7L()] = [VC—')’,J/D—A] + [Vévin_x]

= zatl(ﬁx)m [Vnyl?ym] (78)
ntm
+ z énf(Ex}m [anlvym ]
nd.m

The following identities hold for arbitrary operators A4,B,C:
[4,BC]1=[A4,B]C + B[4,C],
[4B,C]=A4[B,C] +[4,C]B. (719)
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With (79), (78) becomes

[K’L()] = Z EnI(D_x)m{Vn [yl’ym] + [Vn’ym ]yl}

ndm

+ ,Z Enl(l—)-x)m {Vn [Vl!ym] + [Vn!ym ]VI}

With (75) and using the fact that the matrix C = CkT'is sym-
metric,'* leads to

[K.L,)=D,-Cy + 2D,-.CV. (80)

For the higher order commutators one obtains

(K,1"Lo=D,-C"y +2 _&Yw.

(81)
This equation can be proved by induction on #. The calcula-
tion is similg_r to the calculation of [K,L,]. We observe that
the matrix C "C is symmetric for all m>0 since

C"C =CM~'CM ~"-.CM ~'CkT
=(C"C)t=CC™.
C and M are symmetric. Usmg this S property the last term in

(81)becomes 23, . ,_,_ ,D,-C™C )’CV The sum vanished
for even n. For odd » it is equal to 2D,-C "~ ICv.

E'E"y,
[K"]nLO= n o—n FYal P
b,.Cy +2D,.C"— 'V,

S D.-CmCl

mad=n—1

ncven

n odd.
(82)

The final result for the operator Lo(t) is
Lfe)= 3 (K Lol(— 1) /nt]
n=0

=D.e G4+ D (eC—e C)CICY, (83
and with the definitions of C, C, and D, [(76)] one obtains
Lyft)= —y-M ~'E(—1t)D,

+ kTV.[E(t)—E(~t)]D,. (84)
The matrix E (¢} is the exponential
E(t)=eM . (85)

The corresponding expression used earlier for the transla-
tional motion

=P 9 8 —la/mit L ok T smh(— t ) i 9

m 8q m dp Jq

is a special case of (84). It is remarkable that no higher than
second order derivatives appear in Lyt

The calculation of the operator f, is similar. One
obtains

Lt)=V-E{t)[D.U(x)]- (86)
In the final step we calculate the operator Eq which is qua-
dratic in the momenta p. This leads to major complications,
but it turns out that the operator fq(t ) contains no higher
order derivatives than a third order derivative in the mo-
menta g.

We will write L, as the scalar product of two vectors
with 6° = 216 components [(74)]:

L=—a(ys yeV) (87)
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In order to find the commutators [X,-]"L, we make the an-
satz that there exist some vectors W™, X ™ yn Z " guch
that

(K, ]"L, = W (y& yo V) + X "%y
+Y"ysVeV)+Z"(VeVeV) (88)

The vector X ""*eR® is defined X {"*=3,X ) . The definition
of the nth commutator [(16)] [K,-]"L, = [K,-]([K,-]" " 'L,)
allows us to derive recursion relations for the vectors W,
X("), Y("’, Zin,
Lemma: W9 =

Wi+ iy
X+ ytnn + Wwing

—a, X(O) O Y(O) O Z(O} 0

(89)
yir+ ) — Y(")Y—{— Wlniq/

Zn+ ) - Z(n)¢ + W(n);:

The 216 X216 matrices Y, @, =, ¥, X are defined
>=Celel+leCel—1eleC",
Y=Celel—-10C'el—18l18C",

&= -C'elel—-18Ctel—1818C",

(90)

Z=2Cslel,

v=418Ceol,

nN=—-1e1eC".

1 is the 6 X 6 identity matrix. W} is symmetric in the first

two indices W), = W3 foralln =0,1,2,....

Proof: All these relations follow directly from the defi-
nition of X, Y @) Z " [(88)] and the definition.of the
commutator [K,-]"[{16)].

The following equations are true for arbitrary vectors
Xt ym g Z " with the only restriction that W is
symmetric in the first two indices.

Wi, = Wi, 1)
(1) [V_@’Xm)t,v] — (X"".())*-V,

2) [V-O, W (ye yo V)] = W"Z(ye yeV)

(3) [V-Cy,Y"(yeVe V)| =Y"'T(yeVeV),

4) [V-Cy,Z"VaeVeV)]=Z"dVeVaeV), (92)

5)

[V-CV, W (ye ye V)] = (WWZ )V + WY (yeVeV),

(6) [V-CV,Y"(yeVe V)] =Y"Z(VeVaV)

(7) [V-CV,Z" (Ve Ve V)] =0.

The proof of these equations is mostly straightforward. For
instance, the first equation is

[V-Cpx "=Vl = 3 CoXP™* [V, 5:.9,]
aBy
= 3 CaX PV, (—8,) =X~ CN)V
aBy
- (X('")*-V.

The fifth equation is different since there are two different
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types of terms:
(V-CV. W (y® ya V)]
= 2 C;aBW{;é)s{(Va[vB’yy]-*' yévs)

a.fB,v.6,€
+ [va)yy]vﬁ’yéve + yyva [VB’yG]VE
+ yy[va9y5 ]vﬂve}

By assumption W', = W, and [ y,,V5] = — 8,4 This
gives the result

[V.CV, W (ye yo V)] = (WWZV 4+ W (ye Ve V)

The proof of the other equations is similar.
We define the vector valued function Wt :R—R*'°,

W(t)= 20(( — /W (93)

and similarly X *(¢), Y (¢), and Z (¢ ). The recursion relations
(89) for W', X * Y™ and Z " lead to the differential
equations

W)= —a, X(0)=0, Y(0)=0, Z(0)=0,
Wit)= — W3,

X(t)= —X{(1)\2— W)=, (94}
Y(t)= =Y ()Y — W(t)¥,

Z(t)= —Z(t)p— Y(t)=.

These differential equations can be integrated and the results
are

Wit)= —aexpl—1tZ),

X{t)= an ds exp{ — sZ )= explls — 1 112),

Y(t)=afdsexp(—sZ)'I’exp([s——t]T),

Zit)= — LtdsY(s)Eexp([s —t]P).
With these expressions the final result for the operator L (¢ ) is
with (84), (86), (88), (95):
Lit)= —y-M ~'E@)D,
+kTV.[E(t)— E(—1)]D,
+ V-E(t)[D,Ulx)] (96)
+ WitHye yaV)+ X*t)V
+Y(ie)yeVeV)+Z()(VeaVeV).

This is the Liouville operator in the interaction picture. The
quadratic term L, caused all the additional terms. Even if
they are not explicitly known, we will be able to show that
they do not contribute to the first and second cumulants.

D. First cumulant

We calculate the cumulants under the assumption that
initially the distribution in the momenta y is a Maxwell
distribution,

1 — y-M ~'y/2kT

(27kT (et M }*?

gly) = (97)
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The first cumulant is according to (25)

GWn=fd%Emmw. (98)

We use expression (96) of L (¢) and integrate by parts. The
contribution at the boundaries vanish. The remaining terms
are integrals over odd functions in y,,, which vanish. The
first cumulant is identically zero for all times >0,

Gt )P(tx) =0. (99)

E. Second cumulant

The second cumulant gives the first nonvanishing
contribution,

6y = [ as [ @y L) Lol (100)
with [(96)]
GOt)= — L dsfd"yy-M“E( ~1)D,
X[~ yM ~E(—9D,
+ kTVA{E(s)— E(—s)}D, (101)

+VEG[D U]+ Wiskye yeV)

+X ¥}V + Yisi{ye Ve V)]g(y).

Theremainingtermsofthe product L (z \L {s)vanishafterinte-
grating by parts. The only term left from the operator Lit)is
—y-M ~'E(—t)D,. Also the term Z (s){(V & V @ V) van-
ished after integrating by parts three times.

At first we can show that the contribution due to the
terms Wi(s)(y® y® V), X *(5).V,and Y (s}-( y ® V ® V) cancel
each other. We will show that the following integral vanishes
for k = 1,2,...,6 and all times 5>0:

J?=fd%n[wmu®y®w+Xﬂwv

(102)
+ Y(s)}(ye Ve Vlg(y).

We recall that §d % y, y; g(y) = M;kT . Again integrating
by parts (102) becomes

Jk(s) = - z(kTank(s Mnm + Xnnk(s) - Yrmk(s))'
" (103)

The function J, (s) may be written as
Jo(s) = 22_ o J W — s)"/n!. For the constants J {" one ob-
tains, according to {93),

J(ID = - Z(kTW(r:r]nanm +X(rfr)lk - Y(rf)zk . (104)
The recursion relations (89) allow us to define J ' in terms of
7,

JO= 3 (kTW My Cl + X5 0 Cr

I k'\m"
+ VTl )
Comparing this expression with (103} shows
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H= — ST, = (- IE,. (106)
>

The vector J vanishes because X © = @ = 0 and
2 WMy = — Zpp @y My .
= —} Tr(C"™ + M ~'C"™M) = 0 [(65), (89)]). This

shows that J ) = 0 for all / and k. Therefore

Jls) =0, s>0.
The integration of the remaining four terms in (101} is
straightforward. One has to keep in mind that the matrix
M ~'E(t)is symmetric.

The final result is

4 —_®
= Pltx)=G ()P (1)

(107)

=D, Al )(Dx + Zl;(D,U(x)))P(t,x). (108)

The time-dependent diffusion matrix is
At)=kTC ' (1 —e~* ™), 1>0. (109)

Equation (108) is the generalized Smoluchowski equation for
coupled translational and rotational diffusion. Since we
started with a Maxwell distribution at ¢ = 0, the diffusion
matrix A (t) is time dependent. Equation (108) includes as a
special case the translational diffusion and the rotational dif-
fusion discussed in Ref. 1. The operator D, depends on the
orientation a = (¢,6,¥).

D,
D, = , (110
3/0q,
D, =R'$.0,¥)|3/dq, |, (111)
3/9q,
d d
cos ¢ — ———— —cot#f —_
Yoo Tt ¢sm08¢ cotfsiny = ¢
D, = . d a
e "1 _singp— —— —cot —
m¢ae + ¢ ¢sm 5 3 co cos¢' 2
9
oY (112)

The rotation R (¢,0,1) is defined in (33) and (34). The expres-
sion for D,, follows from (59) and (63). Usually the friction
tensor C is split into four 3 X 3 matrices.

C= (CTT CTR) ]
CRT CRR

For axialsymmetric molecules it is easy to show that
C.x = Cry = 0.% In this case the diffusion equation is

1
L, Ulga)

(113)

%P(t,q,a) - {Dq, -AT(Dq + e
+0,4,(D, + 2= (0, Vlgall)|Plegc)

with o
A, =kTC 7' (1 —e ™ ),

r =kTC gz (1 —e =" '), 130

The diffusion of translational and rotational degrees of free-
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dom is still coupled even if the potential U vanishes, since
D,, dependsona. In Sec. V we will solve (114) in two dimen-
sions for U (g,a) =

In Refs. 10 and 11, different expressions for the opera-
tors corresponding to D, and D,, which are wrong in our
opinion, are used. Instead of D, the operator
J = — igx(0/dq) was used. J is, up to a constant factor, the
quantum mechanical angular momentum operator for a ro-
tating point particle. Both operators D, and J have the same
commutator algebra since they are both infinitesimal gener-
ators of a representation of SO(3). D, and J correspond to
two different representations; see {136). A connection be-
tween J = — igx(d/dq) and the three Euler angles (¢,6,v)
also used in Refs. 10 and 11 is not obvious.

For axially symmetric particles one can factorize the
angular dependence of P (¢,4,4,0,¢) in ¢. The operator D2 is
in general not equal to A |, _,, the Laplace operator in
spherical coordinates on the unit sphere. This is only true if
we set d /Ay = 0. If we consider only axial symmetric mole-
cules and do not distinguish between two orientations which
differ only by a rotation about the axis of symmetry, then we
may use D2 |w =4 |,_,; see(136). Reference 10 obtained
wrong results by setting J? = 4.

It is important to keep in mind that the operator D,
depends on the orientation. D, is the gradient along the
body fixed coordinate axis. If D, is replaced by D, = d/dq
one obtains wrong results.'>!' The coupling of translational
and rotational diffusion of the two dimensional model dis-
cussed in Sec. V is a consequence of the a dependence of D,
only.

These claims will be justified in detail in Sec. V.

IV. N PARTICLE DIFFUSION

We consider N particles moving in a fluid interacting
via arbitrary forces. In general the N particle density
Ptx" x?,...,x"™)) is not the product of the distributions
Pt x"), where x")denotes the six coordinates of the ith parti-
cle x = (¢",a"). The N particles are correlated. The inter-
action energy is

U(x(l) (’) (N|)

For an arbitrary observable O (x'",x"?,

....x™)) depending on

the position and orientation of the partlcles 1,...,V the expec-
tation value is defined
Oft )EJd,UXP(I,X)O (x) (115)

with x=(x"",x?,.._ x™)). The volume element dp, is the

product measure

H dq(lldq(l)dq(')d¢ @ sin 2] (iide U)dl/,(”.

i=1

(116)

The objectives of this section is to derive the evolution
equation for the & particle density P (£,x) based on the
Kramers—Liouville equation for the N particle motion. For
the complete description of the N particle dynamics all posi-
tions x'" and all momenta y" are required.
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Z0=(x, p),
(117)
2(t )=(z"(¢ ),2(t ),....,2"N (t)).
These variables are connected with the canonical variables
z.(t) through the transformation (37) and (44) applied on
every single coordinate 2, i = 1,...,N,
z(t) = 2z (¢ )= [V ),...2 VM) ] (118)

Liouville’s equation holds for the density £, (¢,z.) since the
determinant of the Jacobian matrix of the flux z_(¢) is equal
to 1 as a consequence of Hamilton’s equation.

dH dH
o y(ci')k a(x(cn)k
fork =1,2,..,6 and { = 1,2,...,N. The Hamiltonian function
is

v (P = — (119)

(x(cn)k =

% ﬁ’: POMD=1 Y L (D W),
i=1

The matrix M ? is the generalized inertia matrix (53) of the
ith particle. Liouville’s equation is

H(x,y)=

9 fitz)+ 2 -2 fitz) =0, (120
ot dz,

z, is determined by (119). The expectation value of an ob-
servable O (z.) is obtained by

EO(t)= Jduc £(2.)0(2.)

du, is the volume element in the phase space (S, XS, )*".

(121)

du. = 11 1. (122

i=1k=1

Instead of the canonical variables z, we use again z. The
transformation of the density f,, the observable 0, and the
measure du, are

Sflz)= Stz (z),

0 (2)=0 (z.(z)),

{123)

d ’ Det 22 |4

=!| Det —|dz

H dz
N 12 .
=[] sin6" ] dzy.
i=1 k=1
The expectation value of the function O (z),

EO()= [ duft2i0a), (124)

agrees with the definition (121).
The Kramers-Liouville equation for the N particle
problem has the form

9 -39 SN
atf(t,z) z azf(t,z) + Z K f(t,z).

i=1

(125)
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K " is the Kramers operator acting on the ith particle,
KO=VA.CO[MO— 1y 4 kTv0],

V= 9 . {126)
Ay

The Kramers operator is the direct sum of the individual
operators K ? acting on the ith particle. The forces due to the
fluid are completely random and not correlated at different
positions.'* The correlation matrix of all components of all
random forces and random torques, which is a 6" X 6" ma-
trix, is the direct sum of the correlation matrices C'. There-
fore Eq. (126) is justified. With L “, the Liouville operator
acting on the ith particle, the Kramers-Liouville equation
(125) is the sum of N formally identical operators,

2 flea)= $(L9+ K 11t

i=1

LO= —y"MO~1D,; + Dy U(x)-V?

—a"(ye Yo VY (127)
All operators L " are connected through the potential U (x).
Equation (127) contains the complete N body dynamics.

Since [K“,L "] = 0 for i j we have

N N\ N N
exp( —t zK“’) SLY exp(t D K‘”)

i=1 j=1 i=1

U] [t
e 1K L ()] elK
1

1Mz

1

N o
— ,ZL ). (128)

i=1

The operator L't ) are given in Eq. (96) after replacing z by
Z"% and M by M ). The evolution equation for the density f
defined by f=¢* f is therefore

- Noo
%f(t,z) =3L At ) f(2,2). (129)
i=1
Suppose the momentum distribution is Gaussian
initially,
N -
gly) =[] &»")
i=1
(130)
1 :
N = —yM kT
) = kT et ¢ '
As in the one particle case the first cumulant vanishes.
0 N N N
Gt)P(t,z) = j I14%" > L9%t) [] g y*)P(ex)
i=1 j=1 k=1
N ~
=3 [d°yILYt)g(yP(rx)=0.  (131)

Jj=1
The second cumulant is
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GPt)P(t,x) = J.tdsf ﬁ d &y i ﬁv: L)L ™) ﬁ g( ") P(t,x)

=i1m=1 i=n

=[as 3 [l a ez 1T spex

=1J =1 j=1

+[as S [l avmr [T sy
0 IEZm i

i=1 i=1

N t
=[ EG(Z)U)(I)-f- 2 J;dSG(”“)(t)G(“(m'(S)]P(t,X).

=1 I'Zm

The second term vanishes because all first cumulants

G [ = 1,...,N are zero. The remaining term is the sum of
the cumulants calculated for the one particle dynamics. The
N particle diffusion equation is

iP(tx“’ ™) = ﬁl: D, -A%r)
a[ b} ’ » &~ x({)

1
X{D,y + — D,; Ux‘”,...,x‘N’)
(Pao + 2 D U™

X P(txV,... x™),
AN ) =kTCY (1 — e~ "M ), (133)

This is the generalization of the Smoluchowski equation for
N interacting translating and rotating particles.

V.CORRELATIONS BETWEEN THE VARIABLES g AND «

We consider the one particle diffusion equation (114).
In general the positions and orientations are correlated. The
correlations are not only caused by the potential U = U (x),
x = (g,a) or by nonvanishing elements of the matrix
Crgr = CLr. We will show that, if the positions ¢ and the
orientations a are uncorrelated at ¢ = ¢, there are in general
correlations for ¢ > 1, even if the potential vanishes and also
Cr =0.

A. Axially symmetric particles

As an illustration we consider axially symmetric parti-
cles. In this case one can show that C,, = 0.'° If we identify
the axis of symmetry with the e} axis the matrices C ;' and
C zx' are diagonal.

a 0 0 > 0 0
c=0o a o], cz=|0 & o (134)
0 0 a 0 0 b,

We assume that we know the distribution at time 7 = ¢,
where ¢, is large compared with the translational and rota-
tional relaxation time of the momenta.

to»m||C 7'|| and 1> ||C R |},
%P(t,q,a) =kT [aD} + (a;—a)D,);

+bD;, + (b — b)(D,); 1P (t.g.a)
for z> ¢, (135)

This equation is a special case of (114) where we used expres-
sion (134) for the friction tensor. We alsoused A (¢ )=k TC ~!
for 1>t,.
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(132)

The differential operators (D, )%, (D)}, D2, and (D, )}
are given by Eqgs. (111) and (112).

(D, P = 4,
a a
(D, ) = 0 Ba) 3 Bj(aJ=R;(@)Ry(a),
3 1 a? a?
D, = — + ( ) 136
) 3’6 sin’6 \ 32 + %y (136)
—_ 2 __0.0820 _a__a_ + cot Hi,
sin“d d¢ Iy ad6
. _ &
(De ) = F
4, is the Laplace operator in Cartesian coordinates.
We define the new density P (t,4,6,6),
P(.066) = [du Pl.ad6) (137)

Integrating Eq. (135) on both sides with respect to 3 leads to

d d d
— P{t,q,0,8) = kT |ad —a)— - B(¢,0)—
2 Plg8.0) [a oy —a) 2o B60) 5

+ bA lr-_— 1 ]P(t’q!¢’6 )
The matrix B (@) defined in Eq. (136) does not depend on ¢.

(138)

sin @ cos ¢ sin 6 cos ¢
B(¢,0)=|sinfBcosg |® |sinbcosd|. (139)
cos 8 cos 6

The contributions of Eq. (135) which contain a derivative
with respect to i vanish after integrating by parts. Therefore
the operator D2 reducesto 4 |, _,, the Laplace operator in
spherical coordinates on the unit sphere.

D2|,=4| (140)

We assume that the initial condition factorizes. For ¢ > ¢, the
solution of (138) has the form

P(t(,,q,¢,6) = POt(q)POR (¢,9 )r
P(t,q,6,0) = Pt [PR ])PR (t,9,6),

r=1"

The function P, (¢ ) is also a functional of the distribution
Pg{t). Pr(t) and Pt (t) are probability densities,

§d3q P(t,q,[Pr ]) = 1 and §d¢d0 sin OP(t,4,6) = 1 for all
times ¢ > ;. The boundary conditions are: P(t,,[Pr]) =0
ifg, = o forsomei = 1,2,3. Substituting (141) into Eq. (138)
and integrating with respect to ¢ and & (using the weight
sin 8 ) leads to Eq. (142). Similarly one obtains (143) by inte-
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grating with respect to gq.

%PT(t’q! [PR ]) = kT [aAq + ((13 _ a)
i a a
X ZJ jd¢ sin 6dOB,($,6 \Px(1,6,8) o a_q,}

X Pr{t,q,[Pr ])s (142)

9 Pr(t,6,0) = kTbA
at

Pp(t,9,0) fortxt,.
=1
(143)

r

The second equation describes the ‘“Brownian motion on the
unit sphere.” The eigenfunction of 4 |,_, are the spherical
harmonics Y,,, (6,4 ). Substituting a solution Py (¢,4,8 ) of
(143) into Eq. (142) one obtains an expression which is for-
mally a diffusion equation with time-dependent diffusion co-
efficients. The off diagonal elements of the diffusion matrix
vanish if the distribution Py (¢,4,0 ) is uniform.

Similarly, one can show that for arbitrary molecules
with C, = Oasolution of the form (141) (including ¥) exists,
if the positions and orientations are uncorrelated at time
t=t,andif U=0.

B. Diffusion in two dimensions

In two dimensions the diffusion equation without exter-
nal potential can be solved for arbitrary initial conditions.
Equation (108) reduces to

a
- P(t’ql’q2r¢ ) = AP(trql’q2’¢ )’

ot
(144)
9 9
_ aq, 9q, _(?i
4= 3 Alg) a3 +kT7’az¢» >4
99, 99,
_ acos’d +fBsin’¢ (B —a)singcosd
A(¢)_kT((ﬁ—a)sin¢cos¢ asin2¢+Bcosz¢).

(145)

kTa, kTP, and kT are the diffusion constants correspond-
ing to the degrees of freedom ¢, ¢,, and ¢. We assume that
a > 3. We use the following identities to simplify the matrix
Alg):

a+fB  a—p

acos’¢ + Bsin’ ¢ = 5 +Tc052¢,
asin’é +Bcos’d = “—;i — a%gcos&ﬁ, (146)
2 sin ¢ cos ¢ = sin 24,
1 O cos 2¢ — sin 2¢
wir-as(! ) o e )
@) 0 T JGn2s —cos2e
(147)

4 is the average translational diffusion constant and € is a
measure for the asymmetry of the particle.

a+p a—p
b=——, e=—=. 148
> > (148)
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Without solving (144) explicitly it is already possible to make
some statements about the lowest moments of ¢,, ¢,, and ¢.
One obtains the following differential equations for the ex-
pectation values (-}, = fdgq, dg, d¢---P(t,q,,9,,¢ ):

d
_— ’=O,
at (q1)

di (q}), = 2kT8 + 2kTe(cos 2¢ ),,
t

£ (q42), = — WTe(sin20), (149)
t

% (cos 2¢ ), = — 4ykT (cos 2¢ ),,

d , . )

7 (sin2¢ ), = — 4ykT (sin 24 ),.
This leads to

(cos2¢), =e T (cos 24 ), ,

(), = 2kT5t + 2i(1 — e (cos 24 ), + ().,
7/ .
(150)

— € .
(9.92), = 2_7/(1 — e~ “T")(sin 2¢ Yo +$(0:192),, -

The calculation of arbitrary expectation values (0),,
0 = 0(g,,4,,% ) can be reduced to the problem of finding the
eigenvectors and eigenvalues of the diffusion operator 4 in
Eq. (144).

(A — Ak i)Wy = 0. (151)
For the symmetric case a = /3 the solutions of (151) are

, R
Virilgvg28) = —7 fe"-q' e sin(lg ),

(152)
L1 g
v k1a1 o292 cos(Ig ).
We choose a box of length L and assume periodic boundary
conditions,

¢k,k21(‘11’42:¢ )=

Y0,9:8) = ¥L.g2d ), ¥(g:,0.0) = ¥lg,.L,8),

(153)
q1.928 ) = Yg1,92,¢ + 27).
The possible values for &, k,, and / are
kI= i 2;’77-’ k2_ i 2m7T, n)mEN
(154)
1=0,1,2,....

In the general case a > 3 we make the ansatz that the eigen-
functions can be written

1 1, i
Yo elire kzngk|k,l(¢ ).
One obtains the following differential equation for the un-
known function g, , ,(¢ ) [(144), (147), (151)}:

Vi lg1920 ) = (155)
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[ 6k + k3 — ekt — k3 cos 26

. 82 A 172
+ 2€k,k, sin2¢ + ¥ 367 - ;;I 8k iu(¢)=0.
(156)
We define the complex wavenumber & ',
k'=k, + ik,
(157)

y==arctan(k,/k,).

k' can be written k' = |k '|/ . Equation (156) becomes
—(81k'? € k'|2e¥ v € k!ze—2i¢—2iw)
[ otk + <1k Ik

82 A 1742
— M e i(d)=0.

i (158)
ap* kT

+7

The exponentials can be combined to cos(2[¢ + ]). Equa-
tion (158) is equivalent to Mathieu’s equation.'®

%y,(z) + (a,(r) —2r cos2z)y,(z) =0, (159)
Kl +kDa—B)

_ 2 ,
z = ¢ + arctan{k,/k,), (160)
Ars = — KT {ya,ir) + “jﬂ(k% + k3,

8kk.i(@)=y,[¢ + arctan(k,/k,)].

The eigenvalues g, (r) of Mathieu’s equation are negative for
certain values of r and /,'° but the eigenvalues 4, , are al-
ways less or equal to zero for all k,k,, and /.

Equation (159) has a complete set of orthogonal solu-
tions ce,(r,z) and se,(r,z) with the corresponding eigenvalues
denoted by a,(r) and b,(r).'® The eigenfunctions of (151) are

1 1 .
Viny915929 ) = —ET e* e*:50 (1, + arctan(k,/k,))

11 = %e""""e""z‘“ce, (r,¢ + arctan(k,/k,)).
T
(161)

since {w,’(l kl,,z//k'k:,} is a complete set of orthogonal eigen-
functions of the diffusion operator (151), the expectation val-
ue (0), can be found by

(0), = J dq, dg,dd P(t4,428) 0 (41,40

¢k,k21(41,42»¢ )=

— Anit
= 2 e Pk,kzl Oklkll
Kokt

(162)

A;\.AJ ’ ’
+ Z 4 Pk,kzl Ok,kzl'
Kkl

The coefficients O, ;. ;, O i 41> Pr x.i» P &1, are obtained from
O (q,,9,,¢ ) and the initial distribution P (¢,,q,,45,¢ ).
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Os = j dq, dg; dd Ut 1(q1428) O (d1and

E(¢k,k21r0),
o l’(,kzl = (¢l'<,k21:0),
Py = (Pto) ¥ i)
P1’<|k11 = (P(to),wi,kz/)-
Asanillustration we consider the following two observables:
0°(q,,¢ )=sin(kq,)se(r,$ ),

(163)

(164

O<(q,,¢ )==sin(k,q,)ce,(r,§ ),

withk, = 27/Landr = 7*(a — B)/yL >. We assume that the
asymmetry is small. In this case <1 and the Mathieu func-
tions se, and ce, are approximately

ce(r,¢ ) =cos(d ) — % cos(3¢ ),

(165)
se,(r, )=sin(¢ ) — % sin(34 ).
The corresponding eigenvalues are
ar=1+r
(166)
b(r)=1-—r
The eigenvalues 4 , , ;, and A7, , , are
2
Ay ko = _kT(7/+ %(3‘1 +ﬁ))’
(167)

A’iklo,z—kT(y—l- g(a+3[3’)),

and for the expectation values of O and O ¢ one obtains
<0 C>r =~ce KTlv+ (/L) 3a +/1‘)]'y
(168)

<0x>l e KTy + (/LY a + 381

The constants ¢ and ¢’ can be written ¢ = (O ,P (¢,)) and
¢ = (0%P (1))

The state O © decays faster since we assumed a > 3. a corre-
sponds to the diffusion along the e; axis of the molecule. In
the state O © the molecule axis e] is mainly parallel to the e,
direction of the laboratory frame; in the state O *e; is mainly
parallel to the e, axis. The average speed of the molecules in
state O “is bigger in the direction e ; e, is also the direction of
the spatial inhomogenity. Therefore O ¢ decays faster than

O°. This example is typical for the type of coupling of ¢,,4,,
and ¢, which occurs in the translational and rotational diffu-
sion if the otential U vanishes and also C;; = 0.

VI. CONCLUDING REMARKS

We have shown that a “contraction of the description”
is achieved when a Kramers—Liouville process is averaged
with respect to its momenta variables. The second cumulant
of an ordered time evolution cumulant expansion yields the
generalized Smoluchowski equation as the contracted de-

U. Steiger and R. F. Fox 308



scription. We have examined the details of the dynamical
operator algera generated by the contraction procedure for
translational and rotational degrees of freedom, and for as
many as N distinct particles.

A more thorough description of the higher order cumu-
lants, shown to be small here, will appear in a forthcoming

paper.
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