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 My son was born on Pi-day back in 1974. On occasion I have written about 

Pi to commemorate his birth (and also Einstein’s back in 1879). In my website you 

will find my account of how to get Pi exclusively using the Pythagorean theorem 

and the square-root of 2 (http://www.fefox.com/ARTICLES/PiDay.pdf). No 

trigonometric functions are used. At the time I thought that approach was novel but 

eventually discovered many antecedents of similar content. 

 

 On these pages, I present another context for Pi which is also not novel with 

me. My friend John Elton communicated the idea to me and sent me a YouTube 

website where the idea is animated (look up Pi and bouncing masses). There was a 

lot of activity with this problem in 2019. I have not looked at any of the associated 

analysis but instead have tried my hand at it on my own. John did the same thing 

and we both hit upon similar solutions. What is interesting is the different 

mathematical structures that come into play and some subtleties that are easily 

missed. The study of π in the context described here appears to have begun in 2003 

with a paper by Gregory A. Galperin of Eastern Illinois University. A relevant 

URL is 

https://www.maths.tcd.ie/~lebed/Galperin.%20Playing%20pool%20with%20pi.pdf 

 

 The setting for this discussion is a one-dimensional line, say, the x-axis. 

Located at x = 0 is an infinitely massive wall. To the right of the wall is a small 

mass of mass m that may as well be considered to be a point mass. To the right of 

the small mass is a large mass of mass M. The small mass will be bouncing off of 

the wall and the large mass and each such collision will be assumed to be perfectly 

elastic. That means that momentum and kinetic energy are conserved at each 

impact. For the small mass and the wall, this means that the small mass momentum 

https://www.maths.tcd.ie/~lebed/Galperin.%20Playing%20pool%20with%20pi.pdf


will be reversed, and the wall will remain unchanged. Initially the large mass is 

moving to the left with some initial velocity and the small mass is at rest. 

Eventually the large mass will impact the small mass, sending it off to the left 

where it will rebound from the wall and hit the large mass as the small mass comes 

back from the wall. There will be another impact between the moving masses. Two 

possibilities arise. In the first, the second impact of the moving masses will send 

the small mass back to the wall from which it will rebound, and the large mass will 

continue to move to the left, albeit more slowly than before. Another impact will 

occur. Or in the case of the second possibility, the large mass will develop a 

motion to the right. If it does, subsequent impacts from the small mass will 

eventually cause the large mass to move to the right faster than the small mass can, 

and the two masses move off to the right-side infinity, never touching again. How 

many collisions does the small mass make with the large mass and the wall? That 

is the problem: count the collisions until there are no more. 

 

 To make the problem more concrete, imagine that M = 100𝑟 and that m = 1 

where r is an integer and we use arbitrary mass units. The counting problem has 

the solution: Integer part of 10𝑟 ×  𝜋. If r = 1, then 31 collisions are counted; if r = 

2, then 314 collisions are counted; and if r = 10, then the count gives 

31415926535. The last digit for the r = 10 case is 5, not the rounded-up value 6. 

The man-made option of rounding up or down the last digit is not considered by 

the physics of collisions. 

 

 It is worth noting now that the solution does not require locating the 

positions of the two masses at any time nor the length of time between events. 

 

 

1-d physics of collisions 

 

 Two conservation laws govern the dynamics. They are the conservation of 

momentum and the conservation of kinetic energy. In obvious notation these laws 

are 

 

𝑚𝑢′ +𝑀𝑉′ = 𝑚𝑢 + 𝑀𝑉 

 

𝑚(𝑢′)2 +𝑀(𝑉′)2 = 𝑚𝑢2 +𝑀𝑉2 

 

These laws (I am dropping the unnecessary ½’s for the energy equation) are written 

in the standard format that has the before velocities on the right-hand side and the 

after velocities on the left. In 1-d, there is another way to write these laws.  



 

𝑚𝑢2 −𝑚(𝑢′)2 = 𝑀(𝑉′)2 −𝑀𝑉2 

 

𝑚𝑢 −𝑚𝑢′ = 𝑀𝑉 −𝑀𝑉′ 
 

in which all large mass properties are on the right and the small mass properties are 

on the left, whether before or after. Dividing the left-hand sides and the right-hand 

sides yields the linear equation independent of the masses 

 

 

  

𝑢 + 𝑢′ = 𝑉′ + 𝑉 

 

The problem has been reduced to two simultaneous linear equations (only possible 

in 1-d). Rewriting the equation above and the conservation of momentum equation, 

we arrive at the pair of equations 

 

𝑢′ − 𝑉′ = 𝑉 − 𝑢 

 

𝑚𝑢′ +𝑀𝑉′ = 𝑀𝑉 +𝑚𝑢 

 

These equations strongly suggest a matrix notation 

Eq(1) 

 

(
1 −1
𝑚 𝑀

) (𝑢′
𝑉′
) = (

−1 1
𝑚 𝑀

)(
𝑢
𝑉
) 

 

It is never a good idea to use matrices in which some elements have one kind of 

units and the others have some other kind of units, in this case mass and 

dimensionless. We can clean this up by using new dynamical variable with the 

units √𝑚𝑎𝑠𝑠  ×  𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦, that are the same as square-root of kinetic energy. The 

new quantities are defined by 

 

(
𝑞
𝑄) ≔ (√

𝑚𝑢

√𝑀𝑉
 ) = (√

𝑚 0

0 √𝑀
) (
𝑢
𝑉
) 

 

In Eq(1) above we make the replacements 

 



(
1 −1
𝑚 𝑀

)(√
𝑚 0

0 √𝑀
)
−1

(
𝑞′

𝑄′
) = (

−1 1
𝑚 𝑀

) (√
𝑚 0

0 √𝑀
)
−1

(
𝑞
𝑄) 

Multiplying from the left and remembering that matrix multiplication is not 

commutative in general we get the transition equation for a collision 

 

(
𝑞′

𝑄′
) = (√

𝑚 0

0 √𝑀
) (
1 −1
𝑚 𝑀

)
−1

(
−1 1
𝑚 𝑀

) (√
𝑚 0

0 √𝑀
)
−1

(
𝑞
𝑄) 

 

The inverse matrix is given by 

 

(
1 −1
𝑚 𝑀

)
−1

=
1

𝑚 +𝑀
(
𝑀 1
−𝑚 1

) 

 

Multiplying everything yields 

 

(
𝑞′

𝑄′
) =

1

𝑚 +𝑀
(𝑚 −𝑀 2√𝑚𝑀

2√𝑚𝑀 𝑀 −𝑚
)(
𝑞
𝑄) 

 

It will simplify things to introduce the mass ratio 𝜇 =  𝑚/𝑀. This gives us  

Eq(2) 

 

(
𝑞′

𝑄′
) =

1

𝜇 + 1
(
𝜇 − 1 2√𝜇

2√𝜇 1 − 𝜇
)(
𝑞
𝑄) 

 

After every collision, except for the last one, the small mass hits the wall and 

rebounds. This amounts to reversing its velocity, but not the velocity for the large 

mass. This effect is captured by multiplying Eq(2) from the left by  

 

(
−1 0
0 1

) 

 

This gives the governing equation for every pair of collision and rebound 

Eq(3) 

 

(
𝑞′

𝑄′
) =

1

𝜇 + 1
(
1 − 𝜇 −2√𝜇

2√𝜇 1 − 𝜇
)(
𝑞
𝑄) 

 

 



Quaternions and trigonometric identities 

 

 Dynamical equations that are linear and in 2 dimensions (here q and Q) are 

often expressed in terms of quaternions as represented by the Pauli matrices 

 

𝜎0 = (
1 0
0 1

) ,  𝜎𝑥 = (
0 1
1 0

) ,  𝜎𝑦 = (
0 −𝑖
𝑖 0

) ,  𝜎𝑧 = (
1 0
0 −1

) 

 

These are the square-roots of unity in 2-d. They do not commute but instead anti-

commute 

 

[𝜎𝑖, 𝜎𝑗]: = 𝜎𝑖𝜎𝑗 − 𝜎𝑗𝜎𝑖 = 2𝑖𝜖𝑘𝑖𝑗 𝜎𝑘 

 

in which 𝜖𝑘𝑖𝑗 is the Levi-Civita symbol, and is defined by 

 

𝜖𝑘𝑖𝑗 =   
+1, 𝑘𝑖𝑗 𝑖𝑠 𝑥𝑦𝑧;  𝑦𝑧𝑥;  𝑧𝑥𝑦
−1, 𝑘𝑖𝑗 𝑖𝑠 𝑥𝑧𝑦;  𝑧𝑦𝑥;  𝑦𝑥𝑧

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  
 

 

and  

 

{𝜎𝑖, 𝜎𝑗} ≔ 𝜎𝑖𝜎𝑗 + 𝜎𝑗𝜎𝑖 = 0 

 

for i, j, k equal to x, y, z with i ≠ j. The first Pauli matrix, 𝜎0, is simply the 2-d 

identity matrix. 

 

 The application of the matrix 

 

(
−1 0
0 1

) 

 

made in the preceding section is just −𝜎𝑧. What I am about to do, I could have 

done before applying −𝜎𝑧. However, that would be too soon. Doing it now, 

however, leads to great simplifications. Looking at Eq(3) we see that 

 

(
1 − 𝜇

1 + 𝜇
)
2

+ (∓
2√𝜇

1 + 𝜇
)

2

= 1 

 

Therefore, we can make the identifications 



 

𝑐𝑜𝑠(𝜃) =
1 − 𝜇

1 + 𝜇
 ,    𝑠𝑖𝑛(𝜃) =

2√𝜇

1 + 𝜇
 

 

wherein  

 

𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
2√𝜇

1 − 𝜇
) 

 

Eq(3) becomes 

Eq(4) 

 

(
𝑞′

𝑄′
) = (

𝑐𝑜𝑠(𝜃) −𝑠𝑖𝑛(𝜃)

𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜃)
) (
𝑞
𝑄) 

 

= (cos(𝜃) 𝜎0 − sin (𝜃)𝑖𝜎𝑦) (
𝑞
𝑄) 

 

The simplicity of this equation is plain to see. In addition, the formula for n 

iterations of this mapping is also remarkably simple 

 

 

(
𝑞𝑛
𝑄𝑛
) = (

𝑐𝑜𝑠(𝜃) −𝑠𝑖𝑛(𝜃)

𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜃)
)
𝑛

(
𝑞0
𝑄0
) 

 

= (
𝑐𝑜𝑠(𝑛𝜃) −𝑠𝑖𝑛(𝑛𝜃)

𝑠𝑖𝑛(𝑛𝜃) 𝑐𝑜𝑠(𝑛𝜃)
) (
𝑞0
𝑄0
) 

 

= (cos(𝑛𝜃)𝜎0 − sin (𝑛𝜃)𝑖𝜎𝑦) (
𝑞
𝑄) 

 

as follows from induction and the trigonometric identities generated by 

 

𝑒𝑖𝜃𝑒𝑖(𝑛−1)𝜃 = 𝑒𝑖𝑛𝜃 

 

(cos(𝜃) + 𝑖 𝑠𝑖𝑛(𝜃))(cos((𝑛 − 1)𝜃) + 𝑖 𝑠𝑖𝑛((𝑛 − 1)𝜃)) 
 

= cos(𝜃) cos((𝑛 − 1)𝜃) − sin(𝜃) sin((𝑛 − 1)𝜃) 

 



+𝑖 (𝑠𝑖𝑛(𝜃) cos((𝑛 − 1)𝜃) + cos(𝜃) 𝑠𝑖𝑛((𝑛 − 1)𝜃)) 
 

One can also use the Pauli matrix version of Eq(4) and the properties of the 2-d 

square-root of “minus one” that is written as 𝑖𝜎𝑦. Finally, for the initial condition 

given earlier and formulized by 

 

(
𝑞0
𝑄0
) = (

0
−𝑠
) 

 

we obtain the explicit solution 

 

(
𝑞𝑛
𝑄𝑛
) = (

sin(𝑛𝜃) 𝑠

− cos(𝑛𝜃) 𝑠
) 

 

 

Counting collisions 

 

 The angle 𝜃 is determined by 𝜇 and 𝜇 is determined by the mass ratio that is 

chosen. These quantities are fixed so that any condition we might impose as part of 

our analysis must respect these facts. In the first quadrant of a circle used to 

represent 𝑛𝜃 both the sine and the cosine are positive. After a collision and a 

rebound we see that q is moving to the right and that Q is moving to the left so that 

another collision-rebound pair will occur. This happens everywhere in the quadrant 

(0, π/2). When the 𝑛𝜃 values are large enough to be in the second quadrant (π/2, π), 

the sine is still positive, but the cosine is now negative. The solution above 

describes this situation as q still moving to the right but Q is also moving to the 

right. Where this new behavior starts, near π/2, the sine is large, and the cosine is 

small. So, the q velocity (u) is greater than the Q velocity (V) and we continue to 

get collision-rebound pairs. This continues with increasing 𝑛 until u is no longer 

faster than V and V gets away to the right without any more collisions. The 

extremely large mass ratios we are considering imply, as we will show, that the 

exchange of the title, the speedier, occurs very close to π. It is tempting to set u and 

V equal and to solve for 𝑛 but the likelihood of getting exactly an integer is remote 

for the reasons used to begin this paragraph. Instead we must use inequalities.  

 

 Assume there is an N such that 𝑢𝑁 > 𝑉𝑁 > 0 and 𝑉𝑁+1 > 𝑢𝑁+1 > 0. This is 

the exchange of the speedier we seek. Thus 

 



(
𝑢𝑁
𝑉𝑁
) = (

1/√𝑚 0

0 1/√𝑀
)(
𝑞𝑁
𝑄𝑁
) 

 

 

=

(

 
 

sin (𝑁𝜃)

√𝑚
−cos (𝑁𝜃)

√𝑀 )

 
 
𝑠 

 

Similarly,  

 

(
𝑢𝑁+1
𝑉𝑁+1

) =

(

 
 

sin ((𝑁 + 1)𝜃)

√𝑚
−cos ((𝑁 + 1)𝜃)

√𝑀 )

 
 
𝑠 

 

The inequalities, near π, become 

 
sin (𝑁𝜃)

√𝑚
>
−cos (𝑁𝜃)

√𝑀
> 0 

 

−cos ((𝑁 + 1)𝜃)

√𝑀
>
sin ((𝑁 + 1)𝜃)

√𝑚
> 0 

 

To get a handle on N, I will now consider it to be continuous and simply solve for 

N*. 

 
sin (𝑁∗𝜃)

√𝑚
=
−cos (𝑁∗𝜃)

√𝑀
 

 

Therefore 

 

𝑁∗ = −
1

𝜃
𝑎𝑟𝑐𝑡𝑎𝑛(√𝜇) = −

𝑎𝑟𝑐𝑡𝑎𝑛(√𝜇)

𝑎𝑟𝑐𝑡𝑎𝑛 (
2√𝜇
1 − 𝜇)

 

 



which for small 𝜇, such as 1/10,000, is close to −1/2. Blindly dealing with 

tangents (and arctangents) near π can get you into trouble (we expect 𝑁∗ to be 

large and positive). Let us assume that 𝑁∗𝜃 is close to π. We will write 𝑁∗𝜃 = 𝜋 −
𝜖 where 𝜖 is small in some sense (to be determined). The equality condition is now 

 
𝑠𝑖𝑛(𝜋 − 𝜖)

√𝑚
=
−𝑐𝑜𝑠(𝜋 − 𝜖)

√𝑀
 

 
sin(𝜋) cos(−𝜖) + 𝑐𝑜𝑠(𝜋)𝑠𝑖𝑛(−𝜖)

√𝑚
=
−𝑐𝑜𝑠(𝜋)𝑐𝑜𝑠(−𝜖) + 𝑠𝑖𝑛(𝜋)𝑠𝑖𝑛(−𝜖)

√𝑀
 

 

𝑠𝑖𝑛(𝜖)

√𝑚
=
𝑐𝑜𝑠(𝜖)

√𝑀
 

 

𝜖 = 𝑎𝑟𝑐𝑡𝑎𝑛(√𝜇) 

 

This makes perfect sense. When 𝜇 is small so is 𝜖. Moreover, for small 𝜇 we obtain 

the condition 𝜖 < 𝜃, or put even more strongly, 𝜖 ≈ 𝜃/2. Not only did we find 

where the exchange of the speedier occurs, but it is the last possible integer 

for 𝑁𝜃 < 𝜋. 𝑁 is the integer part of 𝑁∗, and 𝑁 + 1 puts the angle (𝑁 + 1)𝜃 into 

the third quadrant where no more collisions or rebounds can occur. 

 

 Let us summarize what we have at this point. The mass ratio is 𝜇 = 𝑚/𝑀. 

Usually, we choose 𝜇 = 100−𝑟 in which r is an integer. The mapping of the 

velocities from after a collision-rebound pair to after the next collision-rebound 

pair of velocities is expressed in terms of the finite angle 𝜃 which is given in terms 

of the mass ratio by  

 

𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
2√𝜇

1 − 𝜇
) ≈ 2√𝜇 

 

where the approximation is good to 3 parts in 200, for 𝑟 = 1. The more precise 

value for 𝑟 = 1 is .19933 radians. The integer part (IP) of dividing π by 𝜃 is 𝑁. 

Therefore 

 

𝑁 = 𝐼𝑃(𝜋/𝜃) = 𝐼𝑃(𝜋/.19933) = 𝐼𝑃((𝜋/1.9933) × 10) 

 

= 𝐼𝑃(15.76) = 15 



Each 𝜃 event corresponds with 2 collisions, one between the two masses and one 

with the wall. This leads to 

Eq(5)  

 

2𝑁 = 2 × 𝐼𝑃 (
𝜋

2
× 10𝑟) 

 

Since multiplying by 2 and taking the Integer Part do not commute and because the 

digits of π are not all even, we are not finished. For example, let 𝑟 = 3 and  

consider Eq(5).  

 

2𝑁 = 2 × 𝐼𝑃(1.5707…× 103) = 3140 

 

We are short one collision, but not a collision-rebound pair. Is it possible that the 

last collision has the property that both velocities are positive with the large mass 

moving faster than the small mass? After 𝑁 events the state of the system is given 

by 

 

(
𝑞𝑁
𝑄𝑁
) = (

𝑠𝑖𝑛(𝑁𝜃)

−𝑐𝑜𝑠(𝑁𝜃)
) 𝑠 

 

For 𝑟 = 3, 𝜃 = .00199999933 radians and 2𝑁 = 3140. Dropping the s above we 

have 

 

(
𝑞𝑁
𝑄𝑁
) = (

𝑠𝑖𝑛(3.139998)

−𝑐𝑜𝑠(3.139998)
) = (

. 001594

. 999998
) 

 

The corresponding velocities are 

 

(
𝑢𝑁
𝑉𝑁
) = (

0.001594
0.000999

) 

 

What happens to this state? If we apply the matrix 

 

(
𝑐𝑜𝑠(𝜃) −𝑠𝑖𝑛(𝜃)

𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜃)
) 

 

we automatically also include another wall rebound. The correct application for 

just a two-mass collision is 

 



(
−𝑐𝑜𝑠(𝜃) 𝑠𝑖𝑛(𝜃)

𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜃)
) 

 

Using the Nth (q, Q) state from above we get 

 

(
−𝑐𝑜𝑠(𝜃) 𝑠𝑖𝑛(𝜃)

𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜃)
) (
. 001594
. 999998

) = (
. 00040
. 999999

) 

 

where the value 𝜃 = .00199999933 is used. This is for (q, Q). To get (u, V) we 

need to divide the q value by 1 and the Q value by 103. The result for the velocities 

is 

 

(
𝑢𝑁′
𝑉𝑁′
) = (

. 00040

. 00099
) 

 

 

This is the last event, a single collision followed by both masses moving to the 

right, with no wall rebound and with the Q mass the speedier. 

 

 As r is increases, the finite number of digits of π also increases. If the last 

digit of this finite set of digits is odd, then the circumstances needed for one last 

collision between the masses after which both masses continue to move to the right 

will be realized. The example of this given above is generic. On the other hand, if 

the last digit is even, then the last event will be a collision-rebound pair in which 

the small mass recoils off of the large mass and then rebounds from the wall but 

never catches up to the large mass again. This is also generic. Note that whichever 

happens, it is the next digit in the sequence of digits of π that is the last digit, not a 

rounded off value. 

 


