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forms of ubiquinone are interconverted via redox reactionsetween
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Kinesin moves along microtubule in the plus direction by tdrnately
attaching each head to the beta-tubulin subunits (light orage), pro-
ducing a 16 nm translation for a given head and a 8 nm translatn
for the center of mass of the kinesin dimer. The two heads ar@-a
proximately 6 nm in diameter and can together move forward agnst
externally applied retarding forces up to 7 pN [6]. Kinesinsi attached
by a polypeptide neck linker (black lines) to the coiled-costalk, which
binds cargo. This neck linker can either be free (left headpp) or
bound weakly to a head in a zippered state (left head, bottom)Xe-
pending on the nucleotide state of the head. Entropic and emilpic
contributions from the neck linkers and the coiled-coil pnade tensions
between the heads. lllustrated above is the spatial displament step,
occurring by means of strain-induced bias ampli cation. Inthe un-
zippered state of kinesin, the probability distribution (the unimodal
curve) of the kinesin head does not favor either the forwarglus end)
or backward (minus end) binding site, by symmetry. Howeverthe
small change induced by neck linker zippering is ampli ed bgn expo-
nential relative increase of the probability distributionnear the forward
binding site. This is related to the slope of the distributio near bound
states, i.e. related to a force. Since a kinesin head visitset forward
site more often, irreversible binding (recti cation) can leep the head
at the binding site to produce a forward step. Power stroke nuels
cannot explain such a mechanism, due to the weakness of naakdr
ZIPPEring. . . . . . e e e e e 54

An illustration of myosin V head domains bound to actin, wih semi-
exible necks meeting at a common hinge and myosin head domai
binding 36 nm apart at the actin pseudo-repeat length. The favard
sense of motion is to the right, and the labeling of the anglesor-
responds to forward binding (backward binding would exchaye the
order of ; and , in the diagram). Given these angles, the elastic free
energy may be determined for a given model of the myosin necksg.
that of Lan and Sun used in the text [45]. Notice that this pictire
does not take into account the observed ability for myosin Va bind at
lengths unequal to the pseudo-repeat length of actin [8, 43jut this
complication does not seriously a ect the argument inthe te. . .. 55
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A doubly-bound kinesin dimer oriented with the microtubué plus-end
to the right. The N-terminal kinesin heads can bind to tubuln [33,
34, 93, 39]. The kinesin heads are connected by two neck lirkke 15
amino acids (a.a.) each [71], and these neck linkers end in ailed-
coil \stalk" that can connect cargo through light chains andmediate
tension, indicated by F (the load force). Entropic considerations for
the neck linkers suggest a thermal forcésy, , which resists neck linker
extension. A microtubule-bound head in an ATP or hydrolyzedATP
(ADP.P) state will initiate immobilization (zippering) of its neck linker
onto itself through a series of hydrogen bonds, schematilyaindicated
by hatched lines. This gure outlines structures found in Potein Data
Bank le: LIAO[39]. . . . . . . . . . . . .

Key aspects of kinesin's forward (plus-end) cycle have Imeelucidated
through a varied multitude of experiments, including cryoEM, x-ray
structural, force bead, and others [97, 71, 7, 75, 29, 83, ¥]. This
process is brie y reviewed, where® " labels the ATP nucleotide state,
\D" the ADP nucleotide state, \ " the no-nucleotide state, and P"
the phosphate after ATP hydrolysis. The free head is shaded tclar-
ify motion between frames. Frames 1,2: the free head weaklynts
to the plus-end binding site, leading to strong binding oncA&DP is
released. ATP binding to the plus-end head is inhibited by acordi-
nating mechanism (labeled T-gate, ref. Section 6.1.4) thas activated
by the internal strain. Frames 3{5: hydrolysis of ATP in the mnus-
end head leads to an intermediate ADP-phosphate stateP\P ," and
phosphate release alters the binding of the minus-end heada weak
binding, which allows rapid release of the minus-end headofn tubu-
lin [13]. Frame 5 is to be identi ed with the parked state in Cater
and Cross [6]. Frame 6: the free head tends not to strongly hiruntil
ATP binds to the microtubule-bound head [28]. ATP binding intiates
zippering of the microtubule-bound head's neck linker, cociding with
a large acceleration of the rate for the free head to bind ontmicro-
tubule. This entire forward cycle consumes one ATP and movdke
center of mass of the system 8 nm. . . ... ............
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Plots of zippered and unzippered stationary probability ensities (in
arbitrary units) vs. the reducedinterval [ d;d] (ref. Section 6.1.1 and
Eq. 110), for the case example in Section 6.3 that ignores theacts of
weak state unbinding. The use of the reduced interval, whickubtracts
the coiled-coil extension, hides the fact that zippering ia small change
(2 nm) compared to the distance travelled by one head (16 nm).
Zippering probabilities, e.g. Eq. 85, are not represented these plots.
As discussed in Section 6.2, the small and decreasing taifstloe dis-
tribution are responsible for the generation of large biase Apparent
in these plots are the competing in uences of zippering, wth shifts
the density towards the plus-end, and of loads, which shifthe density
towards the minus end. Stall occurs when all these e ects laice one
another. The inclusion of weak state unbinding in the modelrpserves

many of the features presented here. . . .. ... ... ........

Much of the biasing mechanism is assumed to occur in the kad ge-
ometry of frame 5 in Fig. 8, where the external load acting onhe
microtubule-bound head leads to long dwell times (ref. Sech 6.4).
However, the free head could have, in the time before ATP ugta, an
opportunity to bind rearward during a period when forward bnding
is virtually excluded (due to no zippering). Thus, bias wouw then be
[ATP] dependent due to [ATP]dependence of the waiting mecha&am.
In (a), a fast step is outlined that corrects this undesired ickward step-
ping. Since the forward head experiences strain due to thearsvard-
bound head, ATP uptake is greatly inhibited in the forward had, and
thus, there exists a much larger probability that the rearwed head
detaches rst (at the expense of one ATP hydrolysis). In comast, (b)
outlines how a \real" backward step may occur once the waitopnmech-
anism has ended, i.e. once ATP has bound to the microtubulesbnd
head. Notice that if the rearward head binds as in (b), the favard
head is at least one chemical step ahead of the rearward headfith
a few assumptions, the forward head in (b) may then be expedtdo
release rst on average. Events in (b) where instead the resard head
unbinds will alter the simple relation between binding and tepping
direction, but these (potentially uncommon) events are igored at the
level of detail inthismodel. . . .. ... ... .............
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Part (a) illustrates a rate model to minimally describe Tgate's e ect
on dwell times (actually, the steady-state natural lifetine). Such a
simple model would doubtfully predict detailed measuremes) e.g. the
randomness [86]. The dashed region that contains abstradates s;
and s, describes the overall ATP uptake mechanism, which includes
T-gate within a Michaelis-Menton structure. The states; represents
the remainder of kinesin's chemical cycle. A particular fon of the
force dependent ratek(F) = 1= (F), is taken from Eqg. 87. Part (b)
provides a plot of dwell times from the rate model in part (a) wh
parameters deduced by tting to the model of Nishiyama et al[56],
tting with better than visual accuracy. That the agreement with
Nishiyama et al. is excellent is likely a result of the choice Eq. 87,
but this is not to state that our rate model is identical with theirs
(e.g. in the manner [ATP]dependence is included). Used in pia
(b): =3:10 nm,Ry =193, k, =5:08s' M ! k =137 s,
k(0)=857s Y, k3=137s !, andT=300K. .............

A network diagram to describe the bias of kinesin's step,rqviding
the rates necessary for Eq. 11%, represents the reduced interval, the
state where one kinesin head remains unbound., ands represent
the plus and minus-end weak binding states, respectivelyd is the
steady state probability current entering the process (du¢o kinesin
binding ATP to the microtubule-bound head), andJ., J are the
exiting currents (due to strong binding transitions). The hbelsk® are
given to the rates of weak binding from a di using state k" to the
rates of weak state unbinding (e.g. from Eq. 86), ankl® to the rates
of strong binding. As a simpli cation, the strong binding raes equal
a constantk® that is independent of load. The essential irreversibility
of the strong binding step corresponds to a large free enerdgcrease
for strong binding transitions (consistent with the RBM principle).
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SUMMARY

Nanoscale biological systems operate in the presence ofrafelming vis-
cous drag and thermal di usion, thus invalidating the use ofmacroscopically oriented
thinking to explain such systems. Recti ed Brownian motion(RBM), in contrast,
is a distinctly nanoscale approach that thrives in thermal mvironments. The the-
sis discusses both the foundations and applications of RBMith an emphasis on
nano-biology. Results from stochastic non-equilibrium etady state theory are used
to motivate a compelling de nition for RBM. It follows that R BM is distinct from
both the so-called power stroke and Brownian ratchet appreaes to nanoscale mech-
anisms. Several physical examples provide a concrete foatidn for these theoretical
arguments. Notably, the molecular motors kinesin and myasiV are proposed to
function by means of a novel RBM mechanism: strain-inducedids ampli cation.
The conclusion is reached that RBM is a versatile and robustparoach to nanoscale

biology.



CHAPTER |

INTRODUCTION

Biological cells are characterized by vastly smaller lengtscales and weaker energy
scales than found in macroscopic systems [62]. An E.coli baxaum, for example,
measures only micrometers in diameter, while many intradelar processes are driven
by the free energy of adenosine triphosphate (ATP) hydrolys (approximately 12

20 kg T at physiological conditions) [85]. As a result of these smaind weak scales,
the hydrodynamics of cellular life resides in the extremewoReynolds number (1)
limit [46], and inertial e ects are negligible compared to hose of viscous drag. Motion
is thus overdamped and described by a combination of two pramy modes of motion:
drift and di usion. This thesis focuses on a distinctly di usion-driven scheme, recti ed
Brownian motion (RBM), that is prevalent in subcellular biology.

Historically, a \power stroke" approach to cellular and sulsellular mechanochemi-
cal mechanisms has frequently been employed, especiallyhia treatment of molecular
motors [93]! Analogous to a power stroke in a macroscopic motor, a nanokcaower
stroke continually expends free energy to e ectively genate a force that overcomes
viscous drag and other retarding forces that inhibit motion Nanoscale enzymes that
perform a power stroke require a specialized molecular stture responsible for the
generation and transmission of a power stroke energy, e.g. sk molecular level
arm connected to an enzymatic \motor" base that progressily anneals hydrogen
bonds [100]. However, such an adapted structure is frequnabsent, either fully or

in part, in many biological mechanisms.

IMolecular motors are mechanochemical enzymes that use chéral free energy, e.g. from ATP
hydrolysis, to generate rectilinear or rotational motion. In the case of rectilinear motion, this is
frequently done by interacting with a long molecular track, e.g. actin or microtubule.



A viable alternative to such a power stroke scheme is RBM, wth instead har-
nesses naturally occurring thermal uctuations from the ud medium [20, 59]. Ther-
mal di usion spontaneously generates nanometer displacemts in a time of order mi-
croseconds, such that di usion can quickly provide signi ant spatial displacements in
a nanoscale mechanism. This di usion can be recti ed on avage by non-equilibrium
boundary conditions, which are in turn established by the @enditure of free energy.
The emphasis in RBM is thus how boundary e ects contribute tahe irreversibility
and free energy expenditure in a mechanisfn.

The recognition that RBM can be used as a means to drive nanase devices is
not itself new; A. Huxley utilized RBM ve decades ago in an edy model to explain
muscle contraction [36]. However, the relatively recent \aéh of structural and kinetic
information for proteins and their activity, respectively has provided evidence that
RBM may be a dominant scheme in previously power stroke-donated realms of
nano-biology. The dimeric molecular motor kinesin is one sl example treated in
this thesis3® Kinesin has two \heads" that alternately step along the lenth of a
microtubule in a \hand-over-hand"” manner, such that the intially rearward head
becomes mobile and binds in front of the initially forward had [103]. This mobile
head is compelled to the forward position by an interaction ith the other stationary
head, as mediated primarily by non-rigid elements that corectt the heads [76]. The
lack of rigid elements suggests that a Brownian motion sche&nat least in part,
governs the forward stepping of kinesin [21, 52].

Despite such progress in the realm of molecular-scale meatisans, the argument
that RBM is fundamental to nano-biology has encountered regance. For example,
some have considered RBM to be just another term for the morarhiliar Brownian

ratchets, while others have concluded that a Brownian motiomechanism is too slow

2Indeed, RBM will be de ned to be a subset of boundary driven systems as a whole [66].
3Kinesin is discussed primarily in Chapters 5 and 6. There, Fgure 7 provides further structural
information.



to su ciently explain the how molecular motors can progressagainst experimental
retarding loads of several picoNewtons [35]. This thesistampts to address these
issues from multiple angles. In particular, the foundatios of RBM are laid down by
physically oriented discussions of low Reynolds number dgmics and non-equilibrium
steady state theory. The role of the non-equilibrium free emgy pro le and its connec-
tion to irreversibility will serve a key role in this endeave. These underlying principles
are illustrated by means of several physical examples thateacommonly discussed
in cellular biology. In this manner, RBM is argued to be a powéul, versatile, and

ubiquitous tool in intracellular processes.

Of particular interest is a new RBM scheme for molecular mots: strain-induced
bias ampli cation. Strain-induced bias ampli cation simultaneously explains how
internal strain between two molecular motor heads can bothnsure chemical coor-
dination and sensitize the system to strongly favor forwardinding over rearward
binding for a mobile head [52}. Bias ampli cation models depend critically on the
role of boundary e ects, in contrast to power stroke approdes, and will be demon-
strated to provide an explanation to apparent experimentadliscrepancies in molecular
motors. This is reviewed in the latter portion of this thesiswhere bias ampli cation
is applied as a uni ed scheme for the molecular motors kinesand myosin V.

The thesis is outlined as follows. Chapter 2 reviews the nesary mathematical
background that will be used to understand both the kinetic ad thermodynamic
formalism of small systems, including a brief review of Laegin equations, Fokker-
Planck equations, and results that relate irreversibilityto free energy expenditure.
Chapter 3 utilizes these results to build a coherent picturef RBM as a widespread
scheme in nanoscale biological systems. The argument is reabat RBM is both a

distinct and even preferable alternative to power stroke ahBrownian ratchet models.

4Chemical coordination refers to a correlation between the espective internal states of the two
heads, such that the heads are kept chemically out of phasef the heads instead operated indepen-
dently, a molecular motor would tend to rapidly detach from its track [13].



The remaining chapters explore particular applications dRBM to biological systems.
Chapter 4 covers two relatively simple systems that play esstial roles in fundamen-
tal metabolic processes: the ubiquinone shuttle and rotagnzymes. Simple models
for ubiquinone and rotary enzymes will highlight many of thetopics discussed pre-
viously. New detailed molecular dynamics (MD) simulationsre also discussed for
the biotin rotary enzyme, in the interest of investigating he kinetics of a non-trival
system. Chapter 5 discusses bias ampli cation models fordhconventional variants
of the molecular motors kinesin and myosin V. Chapter 6 prests a more detailed
and physically motivated model for kinesin, based on the prciples in Chapter 5.
The ability for this model to reproduce experimental result is discussed. Chapter 7

contains concluding remarks.



CHAPTER I

MATHEMATICAL BACKGROUND

This chapter provides a background of the formalism behinche analysis of uctuat-
ing systems, with emphasis on those found in nanoscale bgiltal mechanisms. Sec-
tion 2.1 brie y reviews time-continuous stochastic proce®s. Section 2.2 provides a
coherent discussion of free energy and irreversibility amdll be referenced frequently

in this thesis.

2.1 Stochastic Processes

The dynamics of nanoscale biological mechanisms are heawi uenced by a tumul-
tuous liquid environment. Investigation of such systems bgirect simulation, e.g. by
molecular dynamics, is computationally expensive or everrghibitive. Fortunately,
stochastic models o er a simpler alternative that frequeny reproduce the quantita-
tive aspects of di usive motion! This stochastic approach to di usion is typically
presented in either a Langevin form or a Fokker-Planck formeach an essentially
equivalent representation of the same random process. Tkhetvo approaches are
brie y discussed below, following a very short discussionf oeaction networks (also
known as master equations). A thorough review of this backgund material can be

found in the combination of a few references [19, 23, 72].

1Rigorous examples of classical di usion exist [15, 27], andhese may deviate from stochastic
di usion in signi cant ways.



2.1.1 Reaction Networks

A closed reaction network for a nite number of states repre&sts one of the most
fundamental time-continuous stochastic systems, often ed in the modeling of non-
equilibrium chemical reactions [32, 80].

A reaction network is a Markov process described by the ratés; for a transition
from state i to state j. All transitions are here assumed to be bidirectional,such
that K; 6 0 implies K;; 6 0. Letting p; be the time-dependent probability to be at
state i, the probability distribution of the reaction network is ewlved according to

the master equation

dp _ X

o - D
jiisi

Jj = Kyjpg Kjip

with J;; the probability current from state i to state j .

Equivalently, the theory can be built upon stochastic trajetories. Supposing the
system is at statei, a transition to some other state occurs with an exponentik
distributed waiting time of rate K; = P ;i Kji, while the probability that this tran-
sition produces some particular statg is K; =K;. The path integral representation
of a reaction network in Section 2.2.1 will demonstrate thehtoretical usefulness of

the trajectory picture.
2.1.2 Langevin Equations

Langevin equations are an approach to stochastic ordinaryi érential equations,
written as an ODE with an additional noise term. In the case o& multi-dimensional

system, a non-linear Langevin equation can be written [192F

dXi

X
gt - e+ | gij (%) ; () (2)

2This is a necessary condition for any system treated with theree energy formalism in Section 2.2.



with each (t) a noise function that must be specied (each such noise issasned
to be statistically independent of the others), and the furttons h; and g; are \drift"
and \noise" terms, respectively) The noise combinationp ; Gj j represents forces
from the environment that, though unknown, can be statistially characterized.

A typical example (the only case needed in this thesis) is noalized Gaussian

white noise? which is characterized by the two-time correlation functio
h ()i

h (t1) (t2)i

0

(t1 1) 3)

with angular brackets representing an average over realtaans of the Gaussian white
noise, and (t) the Dirac delta function. All higher order correlation furctions can be
derived from Eqg. 3 on the condition of Gaussian noise, whererecelation functions
e ectively factorize [72]> While Gaussian white noise is far from an ordinary function,
physical systems always have a nite correlation time in the noise. In this vein, the
manipulation of Gaussian white noise is often treated in plgjcal applications as if
the noise is an ordinary smooth function of time.

As an example of how Langevin equations are handled, considanple integrated

white noise fi(x;t) = 0 and g(x;t) =1). The solution in this case is written

YA t
X(t)= dto (to) + Xo (4)
0
By Eq. 3, this process has a constant average
YA t
hx(t)i = dt; h (t1)i = Xo (5)
0
and a variance that increases linearly with time
YA t Z t
(X(t) x0)> = dty dtzh(t) (t)i =t (6)
0 0

3The precise role of these functions can be determined by exaning stochastic averages, e.g. in
Eq. 7 below.

4Correlated (\colored") noise is also typical. For example,the uctuating velocity of an inertial
Brownian particle can be viewed as a correlated noise that dves the positional variable.

SWhite noise that satis es Eq. 3 may deviate from a Gaussian dstribution in higher order corre-
lation functions, but Gaussian white noise is typical in many physical stochastic processes [19].



fort 0. All higher order moments of Gaussian white noise can be ded from a
Gaussian distribution with the above average and variance.

Solutions to Eq. 2 can be solved in a similar manner, using Tiay approximations
and Eq. 3 to de ne propagation. This physically minded apprach (by Stratonovich)

produces the short-time moments [19, 72]

. X1 @
h xil hi + ) 2% 9
X j

h X Xji Oik ik (7)
K

with  x; = Xj(t+ ) x;(t) and with functions evaluated atx(t) and time t. Stochas-
tic evolution follows from Gaussian propagators with the mments in Eq. 7. The extra
term due to spatially dependentg; is a noise-induced drift, e.g. which may arise for
di usion in a thermal gradient. For simplicity, this thesis avoids spatially dependent

noise and the associated noise-induced drift.
2.1.3 Fokker-Planck Equations

The Fokker-Planck equation for a di usive stochastic procgs governs the evolution in
time of the probability distribution [23, 72], providing an equivalent representation of
the Langevin dynamics. Since the probability distributionis a natural object of study
in non-equilibrium systems (consider the entropy functiop Fokker-Planck equations
often provide a cleaner picture of steady state thermodynans.

The functional form of the Fokker-Planck equation can be motated from various

standpoints, but it ultimately is found to be equivalent to the probability conservation

equation
@p@);;tt) = F Jxt)
|
X !
M) = VG D) Pk ®)

i

8An alternate (and equivalent) Ito formulation of stochasti ¢ integration can be used at the expense
of treating the noise as an ordinary function.



with p the distribution, J the probability current (which includes Fick's law), V; the
local mean drift vector, andDj; a local di usion matrix. The short-time propagator
for a time is a Gaussian distribution with average change in positioh xji V,
and covariance matrixh x; x;i  2Dj [72]. Comparison of these moments to those
in Eq. 7 can be used to relate the Fokker-Planck and Langevirpresentations of a
stochastic process.

A common variant of Eq. 8 is the Smoluchowski equation for anverdamped

particle with a constant di usion matrix

@b(;;tt) r J(xt)
X
Ji(xt) = ilej(x) Dij@—@i p(x; t) (9)

i

. . . P .
where j is a constant drag matrix. The relation i Dik = KeT ik, with

j
the Kronecker delta, is imposed as a consequence of uctuatidissipation relations
(revisited in Section 3.1). In this form, Eq. 9 can be used toepresent the di usive

uctuations of enzymatic complexes in nanoscale biologicaystems.

2.2 Requisite Non-equilibrium Steady State Theory

Few general statements can be made concerning the thermodymcs of systems far
from equilibrium. However, results in this subject contine to surface, e.g. the
many uctuation theorems that relate heat generation to ireversibility [2, 11, 12,
24, 26, 22, 47], or whole steady state thermodynamic formats [31, 57, 78]. This
section outlines several necessary results related to negeilibrium thermodynamics
in preparation for their application to nanoscale biologial systems. Results in this
theory are typically demonstrated in terms of the reaction atworks in Section 2.1.1,
but the generalization of results to continuum systems wiltypically be valid.

An assumption used throughout the theory presented below the nonexistence

of truly irreversible transitions. This condition limits the general applicability of the



theory, e.g. excluding a thermodynamic treatment that exptitly includes the iner-
tial dynamics of a Brownian particle! An appropriate overdamped limit of macro-
molecular dynamics should then be assumed. This limit is s&hle for the naturally

overdamped environment of nanoscale mechanisms, as just in Section 3.1.

2.2.1 Path Integral Representations of Stochastic Systems

Modern non-equilibrium steady state (NESS) theory contai several theorems that
are formulated in terms of stochastic trajectorie8. These are derived from, or at least
related to, path integral representations of stochastic pagation [40, 47, 67]. A few
essential results related to path integrals in stochasticystems are presented here in
preparation for their thermodynamic interpretation in Setion 2.2.2.
For a reaction network, the propagatoP;(j ji) from statei to j in atimet is given
by the corresponding matrix element of the exponentiated gerating matrix W
Pi(jji) = Hjexp(W)jii (10)
with
Wip=(1 1)K pKp (11)
for arbitrary states k and p, and K, = i kike p Kkp the escape rate from statg. As
usual, the path integral approach repeatedly applies the ompleteness relation to
achieve an expression foPy(j ji) that only requires matrix elements for the short
times t
hkjexp(W t)jpi  exp(Wip t) + O(t?) (12)
De ning a path as a sequence of visited states, the nal formof the P(jji) can
expressed as a weighted summation over all possible pathsthat begin at state i

and end at statej
X
Pe(jii) = wi(P) (13)

Pjit j

"This failure can be attributed to the singular nature of the di usion matrix in an inertial system.
8For example, the Jarzynski equality.
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where w;(P) is the weight for the path P. Supposing a given path is labele® =
f1! 2! ... ! ng, where the numbers may refer to any labeled sequence of stte

w(P) is de ned
Z, Z, Z, X

w(P) = d ty d t, d t, w(P;f tjg) ti ot (14)
0 0 0

with
W(P;f tig)= Knn 1 KgoKpgeKntn g Kz g Ki s (15)
de ned for the setf t;g of waiting times in each state ofP.
An important relation follows. The ratio of the path weight w;(P) over the weight

of the reversed pathw;(PR) is dependent only on the sequence of states . Ex-

plicitly,
Wi (P) _ Kpn 1 K3.2K21

= 16
Wi(PR)  KioKaz Ky o (16)

If the path is a cycleC, with rst and nal states identical, then
Wi(C) _ KpnKpn 1 KgoKag (17)

Wi(CR)  KioKas  Kn 1nKnt
Equations 16 and 17 will be important in Section 2.2.2, whenmeon-equilibrium uc-
tuations are discussed.

There are a few complications in generalizing Equations 16 17 to di usive
processes, e.g. due to the in nite path length of a di usiverajectory. One approach
that preserves the result in Eq. 16 is to use a nite state apjximation to the di usive
state space. Alternatively, a return to the nite time-sliced version of the path integral
is possible. This latter approach utilizes the known Gausasn short-time propagators
to provide the weight for a trajectory [72]. For example, cosider one-dimensional
di usive motion, with di usion constant D and local mean velocity. An approximate
ratio (taken in a logarithm that is multiplied by a thermal energy) between forward
and backward propagation over a time is

P (X2jX1) ke T

Py e W vEOe x) vECe x)F  (19)

kBTIn D
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with = kgT=D the e ective drag constant andF = v the e ective applied force
(e.g. ref. Eq. 9). Eg. 18 can then be used to form weights in thpath integral formula

(written for multiple dimensions and with spatially constant noise)

wi(P) £

ke T | =
511 W(PR) -

adx F(x) (29)

with the right hand side a time-discretized integral of the drce along the trajectory

P. In the case of a locally conservative forcé = U, Eq. 19 can be integrated

wi(P)

kBTln Wt(PR)

U(x1) U(x2) (20)

Eqg. 20 can be used, for instance, to derive the detailed balzn condition in an

equilibrium system.
2.2.2 Steady State, Free Energy, and Irreversibility

Long-time behavior of a stochastic mechanism asymptoti¢dglapproaches the steady
state probability distribution pi(s), which can be used to build a thermodynamic theory
of uctuating non-equilibrium processes [80]. Non-equbrium uctuations in the
overdamped systems of interest arise Wh@ﬁs) breaks the detailed balance symmetry,
i.e. whenJ;; 6 0 for some pair of states, thus producing a ow of probabilly current
that can be used to perform useful tasks on average.

An equivalent (and presently more useful) picture of NESS dayamics exists in
terms of stochastic trajectories [47], where non-equililim uctuations arise due to
an irreversibility in the system. Irreversibility is best de ned in terms of the path
integral representation of the NESS. The NESS probabiligtiweight P;(P) of a path

P, from statei to j in a time interval t, follows from the combination of propagator

and steady state weights (ref. Eq. 14)
P«(P) = w(P) p® (21)

By Eq. 16, it follows that
P(P) _ w(P)p?

Pu(PR) ~ w(PR) p® 22)

12



which deviates from unity only in the case that a path has a pferred direction at
steady state, i.e. that the path is partially irreversible.

The kinetic relation Eq. 22 appears in other contexts. An olgct long used in the
study NESS dynamics and thermodynamics is the a nity [32, 8D The a nity, in its
many forms, establishes a non-equilibrium measure of iregibility in the system. A
valid de nition of the pairwise anity A; for the transition from i to j is

Kii P}
Aj = kgTIn L0 (23)
! Kij o

which is zero only whenJ; =0. Thus, equilibrium is equivalent to globally zero
pairwise a nity. The anity A(P) along a pathP, from statei to state |, is in turn

de ned to be the sum of pairwise a nities along the path

w;(P) pi(S) — kaT In P«(P)

w(PR)p® T P(PR)

where Eq. 22 has been used. The path a nity thus measures theirdctional irre-

A(P)= kg T In (24)

versibility along P. The cycle a nity is de ned similarly °

w:(Q) P(Q
Wi (CF) P(C)

A(Q = kT In = kgT In (25)

which has the advantage of independence from the NESS dibtition (it is an intrinsic
property of the cycle).
The kinetic signi cance of the a nity is related to its therm odynamic interpreta-

tion as the free energy expenditure for a transition, i.e.
Aji = i (26)

The validity of Eq. 26 can be argued from multiple standpoirg, such as has been done
for reaction networks and di usive systems [24, 25, 80]. Ceitler the irreversible heat

production rate long used in NESS theory, which is the posite quantity
1 X

Qirr > Aji J;i (27)

ij

9Eq. 25 is related to the Watanabe formula [37, 64].
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that is found from an analysis of the time dependence of theteopy S = i piInp
[80]. If Eq. 27 is interpreted as composed of macroscopichsitions in an isothermal
system, then Eq. 26 would be the free energy expenditure (raiye heat production)
for completing such a spontaneous macroscopic transitioNoreover, pairwise spon-
taneous probability current only accompanies a negative paise free energy. For
these reasons, Eq. 26 provides a sensible non-equilibriusrsion of the free energy.
The relationship between the a nity and free energy may be mee transparent
for processes driven by a single-valued underlying energptential function,® i.e.
those processes in some regidd (that is generally open to external transitions)
that satis es K p’ = K;p? for some distribution p? = e V=T U; is the energy
of the processes that supplies the unique equilibrium digbution in R. The NESS
distribution can then be written p® = & i Y)=sT where ; has the interpretation

of a chemical potential. The path a nity simpli es in this ca se

p(S) po
A(P) = kgT In ; o = ke T Inel 1 n)=keT
P1 Pn
= 1 n= nl (28)
such that
P(P) _ nikg T
P (PR) - e (29)

Spontaneous current along a path arises from a chemical poti@l gradient, as ex-
pected.

A caveat of the a nity-based free energy Eq. 26 is that it caniot generally be
interpreted as a logically separable thermodynamic free emgy, in that it is only
de ned at steady state (excepting the cases of cycles and tpatochastically sampled
paths, the latter of which are used in uctuation theorems).This di culty is related
to the inability to identify a particular locus of entropy production in Eq. 27 [32].

For example, the total entropy production rate is unchangedf the pairwise a nity

0These are discussed again in Section 2.2.4.
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is replaced by a new a nity
Ai = AtV WV (30)

for some state functionV;.** For this reason, reference to the entropy production rate
in a given region of state space is more precisely de ned astrestricted summation

in Eq. 27 over this region.
2.2.3 Example: Diusion in a Potential

An example that is readily treated and interpreted with the brmalism in Section 2.2.2
is the Fokker-Planck equation for a one-dimensional, oveathped particle in a poten-

tial U(x) (ref. Section 2.1.3) [23, 31, 65]

@p;t) _ @Ixt)
@t @x
o 1 o) @ _
J(x;t) = D kB—T @x + @x p(x;t) (31)

The steady statep® (x) of this problem can be solved from the conditiod (x;t) = J,

whereJ is the steady state current. Explicitly

1 @Wx) @
keT @x + @x P (x) (32)

A chemical potential can be introduced to simplify Eq. 32. If (x) = U(x) +

J

ke T In(p® (x) o), for some constant distance,, then

@ (X)=kg T — J o U(x)=kg T
@Xe = D e (33)
Equivalently
@(x) _ keT J _
@~ Y o9
The thermodynamic force = @ (X)=@xn a di using system is thus equal to the

mean drag force v(x), for ensemble velocityv(x) = J=p¥(x) and drag coe cient

= kBTZD.

P
" This follows from the steady state condition ; J; = 0.
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An alternative approach to this problem is by means of the caimuum expression

for the a nity kernel (to be integrated along a path) [65]

(0= FK) kT 2n B0 (3)

with F(X) = @UWx)=@x The irreversible heat production rateQ;, associated with

the interval [a; 1 is then
Zy
dx ( x)J(x)

Q‘il’l’
J((Md @)= 1J 0 (36)

Entropy production in this case thus retains the bilinear fom assumed in near-
equilibrium theory, though J and are typically nonlinearly related to one another.
The treatment of free energy in the higher dimensional case.§. assuming

isotropic di usion) is entirely similar [65], with a thermodynamic force
Tx)= F(x) ksTr Inp®(x) (37)

that can be interpreted to arise from the negative ensembleelocity drag force at
steady state. ~is integrable when the force is integrable, i.e.F = U, such that a

free energy pro le satisfying™= [ arises
(X)= o+ UX)+ ke T Inp(x) (38)

The existence of (x) for di usion is a useful simpli cation of the system energécs,
as will be discussed below in Section 2.2.4, and will be takén Section 3.5 to be

generally valid for all RBM systems.
2.2.4 Free Energy Potentials

As will be discussed further in Section 3.3, a system drivery lonly a few sources
of free energy has important restrictions imposed on its katics [32, 50]. The cycle

free energy (C) in such systems can only be equal to integer linear combinans
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of a basic set of free energies, assumed to arise friinfundamental cycles with free
energies G (i =1;::;5N). Then
X
O= nm G (39)
i
for integersn;. Eg. 39 can be viewed as a topological characterization ofabgs in
state space. From this condition, path free energies are sianly restricted. Suppose
two paths, P; and P,, with shared initial and nal endpoints. The application of
Eq. 39 to the cycleG, = P1 + PR implies
X
(P)= (P2)+ ni G (40)
for the set of integers corresponding to  (Gy).
A consequence of Equations 39 and 40 is the appearance of a NE&e energy
potential (x) that describes irreversibility. Suppose that a regiorR in state space

satises (C) =0 for all internal cycles C. Then, Eq. 40 can be used to prove path

independence for all internal paths between common endptsrk; and x;, i.e.

P)= (x)  (xi) (41)

The function (x) provides all information concerning irreversibility fortrajectories
in R, and thus inherits many useful properties of the a nity.*> More generally, a
multi-valued free energy potential can be constructed by #inclusion of branches
that are consistent with Eq. 40, but this is a straightforwad complication.

A special situation arises for systems that have tight mechachemical coupling,
i.e. systems for which completion of the mechanical portioof the device (e.g. a
di usive step) is statistically equivalent to completion d the chemical portion (e.g. the
reaction cycle of ATP). More precisely, tight mechanochero@l coupling implies any

cycle Cin state space that completesi mechanical steps must satisfy (C) = n G,

12For example, nonzero probability current only arises in the direction of a negative free energy
gradient.
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with G the free energy for the fundamental cycle of the devi¢é. Such a system
is one with a \gate," i.e. a transition through which all cycks with nonzero a nity
must pass. (x) is de ned for a stochastic process on either side of this gaby this
condition (cycles that do not cross this gate have zero a ni). A process between
two such gates similarly has a potential. Gated systems witle useful in the case of
RBM, since many systems, e.g. the examples in Chapters 4 andt&nd to be gated
by one or more steps.

As a nal note, the existence of a potential (x) in aregionR allows irreversibility
to locally be expressed more directly in terms of short-timpropagators, rather than
the more fundamental individual path path weights in Eg. 56. Assume two states,
X1 and X,, that are contained within R. If the propagatorsP (x;jx1) and P (X1jX>)
both only have statistically relevant contributions for pahs of a given free energy
class (ref. Eq. 40), then

P (X2jx1)p® (X1)
P (X1jX2)p®) (X2)

(X2)  (x1)  ksTln (42)

Thus, the free energy pro le locally provides a measure ofdation of detailed balance
conditions!* Regions of approximately equal free energy potential are anty at
equilibrium conditions, and regions with steep free energgradients have strongly

irreversible underlying trajectories.

13 G includes contributions to the free energy from any externalreactions and any external work
done in a cycle of the device.
Y This is obvious for a single chemical transition (ref. the parwise a nity in Eq. 23).
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CHAPTER Il

FOUNDATIONS OF RECTIFIED BROWNIAN MOTION

An argument for the ubiquity of Brownian motion-based mechaisms in nanoscale
biology follows from an appreciation for the rapidity of diusive transport at the
nanoscale in conjunction with the thermodynamic formalismeviewed in Section 2.2.
RBM is de ned as a patrticular class of Brownian motion mechasms, providing a
viable alternative to both power stroke models and Browniamatchets. This de nition
is inspired from the principle of how irreversibility is reated to Brownian motion and
other uctuation-based mechanisms.

Sections 3.1 and 3.2 outlines results relating to charactstic time and length
scales that accompany di usive motion, including prelimiary statements concerning
the role of power stroke versus Brownian motion transport. €gtion 3.3 applies sev-
eral non-equilibrium results in the context of the enzymat systems, in particular
discussing the relevance of boundary driven systems in thenziple of recti cation.
Sections 3.4 and 3.5 formulate proposed de nitions for RBMnal power strokes that

are consistent with these principles.

3.1 Viscosity and Thermal Noise

An appreciation for the immense e ects of viscosity and thenal uctuations at the
nanoscale is critical in the understanding of cellular anchiracellular dynamics [62].
Low Reynolds number behavior imposes heavy viscous dampitigat quickly elimi-
nates inertial e ects,! but thermal uctuations provide a vigorous means to generat

rapid spatial displacements in the form of di usion [90]. Adiscussed presently, an

1Systems that are too small, i.e. those that begin to become eoparable to the molecular size of
water, may require special consideration.
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examination of the interplay between viscous drag and therah heat provides insight
into how a RBM scheme can power a molecular device. Prelimnyacomments are
also made on how Brownian motion-based versus power strdk@sed mechanisms can
be distinguished.

The e ects of viscous drag on a nanoscale body can be made odcag tensors
have been obtained for the linear equations of low Reynoldsimber ow [44, 46].
For de niteness, consider the lowest order solution for owaround a spherical body
(rst derived by Stokes) with massm, radius R, and a position described by a linear

coordinatex. If the drag force is written F45g = X, Wherex_is the velocity, then
=6 R (43)

is the drag coe cient for a sphere in a medium with dynamic visosity . The corre-
sponding relaxation time = m= to dissipate a mean initial velocity vy (ignoring dif-

fusive e ects) is incredibly short for nanoscale systemspusistent with a small mean
inertial range vy in most systems. For example, if the head domain of a kinesiredd

is approximated by a sphere with radiuR =6 nmandamassm=6 10 23 kg, the

inertial lifetime is only picoseconds in water with =1 cp [21]. Even if such a body
was launched forward with kinetic energy equal to the entirédree energy of ATP,
the resulting inertial displacement would be a small fractin of the 16 nm distance
required for kinesin's functionality.

An overdamped description is thus appropriate when analyzg nanoscale dynam-
ics. The addition of thermal uctuations does not alter thisresult, but investigation
of inertial dynamics in light of thermal noise leads to sim@, but useful, results
for di usional displacement and inertial energetics. Conder a particle with viscous
drag coe cient (e.g. from Eg. 43) with thermal noise modeled by a second-order

Langevin equation (ref. Section 2.1.2 and [23])
mx= X+ F+ (t) (44)
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where (t) is a stochastic Gaussian white noise modeling uctuationfsom the thermal
bath, and F is an applied constant external force. (t) is both an unbiased and

uncorrelated in time, such that (as before with Eq. 3)

h ()i

h (t1) (t2)i

0

A (tp t) (45)

whereA is the magnitude of the noise (to be de ned shortly in Eq. 47)and angular
bracketsh i denote averaging over realizations of the noise. The soli to Eq. 44

is straightforward

x(t) x(0) = dt, dt, etz W= (t,)

t=

+ ( Vo VE ) 1 e + Vet (46)

Ve = F= the asymptotic mean velocity due toF, and = m= again the relaxation

time. Eq. 46 determines all relevant averages for the systeras demonstrated in
Section 2.1.2 and Appendix A.1.A is then xed by ensuring that the asymptotic
variance of the velocityA =2m? equals the squared thermal velocitw? = kg T=m,

i.e.

A=2 kgT (47)

A similar treatment of the positional variance at zero forcesets the di usion constant
D=h x?(t!1 )i=2t

p=XeT (48)

Equations 47 and 48 may also be derived from the more generattuation-dissipation
relations by Onsager and Einstein.

Two sources of power input drive the Brownian particle in Eg44: the mechanical
power by the constant forceF and the power of thermal uctuations. The me-

chanical power rapidly (for times greater than ) approaches the deterministic value
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D E
W = Fvg. The power due to thermal noise is a much larger constant

D E ke T
Qn(t) h (Ox(t)i=— (49)
The ratio of these is D E
W Ve
DQTE = (50)
in

where the characteristic length_ = kg T=F has been used. The inertial-like distance
VE in ananoscale system is typically orders of magnitude smadlthan L, indicating
that thermal power is by far the dominant source of power inpu However, thermal

power is balanced by equally large viscous drag dissipatitweat

Qout = _X2 (51)

that approaches¥eT™ for ensembles near thermal equilibrium. The imbalance beten
viscous drag output and thermal power input rapidly approaees the mean drag heat
Ve, Which is relatively small compared to the thermal power itslf.

While viscous drag and thermal uctuations set the dominantpower scales of all
Brownian dynamics, this does not determine the relevance thfermal di usion in the
actual generation of spatial displacements. Speci callgompare the \power stroke™
time ps =L =F (the time to travel a distance L at velocity vg) to the Brownian
motion time gy = L2=2D (the time for the di usional width pﬁto equall). The
ratio gm = ps IS

BM L
=M - - 52
ps 2Lf (52)

whereLg = kg T=F as before. Brownian motion is thus the dominant mode of trans
port for distances much shorter tharL . An alternate interpretation of Eq. 52 is that

power stroke principles dominate when the viscous he&tL generated by the force

2Notice that the mean irreversible heat dissipation in this case rapidly approaches the work done
on the particle (a statement of energy balance). This last olservation is familiar from overdamped
deterministic dynamics but fails to be true in general (consder equilibrium systems).
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F is much greater thankg T. This last observation will again appear in Section 3.3
in a di erent context.

The relative contribution of power stroke and Brownian motn components in
the abstracted agellar propulsion of an E. coli bacterium an already be examined
at this level of complexity, without recourse to elaborate quilibrium theory.® No-
tice, however, the molecular mechanism itself is more conygated and may receive
signi cant contributions from Brownian motion [102]. Following H. Berg [4], E. coli
is approximated by a sphere of radius 1 m with the density of water. The bac-
terium propels itself in runs that last approximately = 1 s, with a secular velocity
approximatelyv=2 10 ° m/s. Motion takes place in a uid with =1 cp at tem-
perature T =298 K. The mean drift distancev ¢ = 20 m accumulated during a
given run is many times the di usional distanceIO 2D ot =0:7 m. Consistently, a
viscous drag heat of 2008z T also indicates a power stroke (by Eq. 52). Flagellar
propulsion as an abstract mechanism thus exempli es a powstroke. Indeed, this
must be true if E.coli is to e ectively overcome di usion in ader to seek out food
sources in chemotaxis. The situation is quite di erent for he di usion of a kinesin
head, which can freely di use the required 16 nm stepping dance in only 2 s. This

rate is rapid compared to the overall rate of kinesin, whichsiof order milliseconds.

3.2 Simple Models of Recti ed Brownian Motion

The inclusion of non-equilibrium boundary conditions is saient to rectify Brown-
ian motion. The implementation of recti cation is frequenty done by the imposition
of e ectively absorbing and re ecting boundary conditionsthat respectively promote
and inhibit di using trajectories to transition into other regions of state space. These

boundaries can be established by the coupling of a few essalht irreversible events,

3E.coli is indeed overdamped. Its inertial lifetime is estimated to be =0:2 s. Once propulsion
has ceased, the mean inertia from agellar propulsion wouldin this time have the bacterium drift
less than an angstrom on average. [4]
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e.g. a statistically favorable chemical reaction, to mecingécal progression in the sys-
tem.

A straightforward and illustrative example is one-dimensinal overdamped* di u-
sion in a potential. Supposing a coordinat&, a force potentialU(x), and a di usion
constantD, the mean rst passage time (MFPT) for a di usive process to tavel from

a re ecting boundary at x = 0 to an absorbing boundary atx = L is [23]
1 Z, Z, .
mepT = = dy  dz VO0) V@)=eT (53)
D 0 0
The characteristic times ps and gy from free di usion are faithfully reproduced by
Eq. 53 forU(x) = Fx (FL kgT) and a constant potential, respectively. Recti-
cation produces more pronounced e ects once an uphill potéial barrier is instead

considered. IfU(x) = Fx (FL  kgT), then yrpt become exponentially large

L2 _
MFPT FF eFtke T (54)

as would be expected from transition state theory [30]. Meahical work can thus be
generated from thermal uctuations in the presence of rectiation. An early RBM
model for kinesin utilized this approach to oppose 3 pN over B6 nm stepping dis-
tance, i.e. a 1&g T potential barrier, with a characteristic time of millisecods’.
Generally, the utilization of recti cation to bring about t hermally-driven barrier pen-
etration is a recurrent scheme in nano-biology.

While the introduction of re ecting and absorbing boundares considerably sim-
pli es the analysis of a di usive process, there are severalinphysical artifacts that
arise. The most obvious is the irreversibility at these bouwdaries, which can be inter-
preted as an in nite expenditure of free energy. A physicalystem always has some

probability for reversing a transition. Two artifacts moreclosely tied to di usion are

4Recall that the assumption of overdamped dynamics is needetbr the NESS formalism used in
this thesis.

SNotice that this model assumes external force is applied dictly to a tethered head, rather than
at some intermediate point between the heads.
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the divergences of the NESS free energy pro lgx) and ensemble velocitw(x) near
an absorbing boundary (ref. Section 2.2). By de nition, theprobability density at
an absorbing boundary is zero. If is a distance to the boundary, a linear approxi-
mation of the probability density near the boundary leads ta In( ) divergence
and av 1= divergence. These two divergences are related, e.g. by E¢, and
signal a breakdown of the overdamped formalism assumed mety. Indeed, if an
absorbing boundary was imposed instead on the inertial dynacs of Section 3.1, the
maximum velocity expected at the absorbing boundary wouldélimited in scale by

the equilibrium thermal velocity g kg T=m.

3.3 Steady State Properties of Nanoscale Biological Pro-
cesses

Cellular enzymes are isothermal motors that spontaneousperform tasks by virtue
of a coupling to available free energy. On the assumption théhe enzyme state and
ambient chemical concentrations provide a complete degation of the system® a non-
equilibrium thermodynamic approach to enzyme kinetics cabe constructed [32, 65].
Such a non-equilibrium theory was reviewed in Section 2.2rimarily emphasizing
mathematical relations that generally hold for stochasticsystems. Reuvisiting the
content of Section 2.2 with a physical interpretation is anmportant step in appreci-
ating the role of irreversibility, particularly as it relates to de ning RBM systems.

In contrast to the mathematical approach in Section 2.2.2, ere paths in state
space were the natural objects, the most basic thermodynammbbjects in uctuating
non-equilibrium thermodynamics are cycles. The decomptien of global free energy
expenditure in terms of fundamental cycles (each with an assiated thermodynamic
force) has been long known [32, 80], in analogy to theorems dimcuit theory. An

enzyme that performs a cyclic motiorCin state space must only leave the environment

5The environment is thus assumed to quickly equilibrate in response to changes in the enzyme.
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changed, with an assumed environmental free energy dierem G. The cycle free
energy is accordingly dened (C)= G. Since each enzyme typically only couples
to a nite number of distinct reactions, all such G should arise from a nite set of
fundamental free energies (ref. Eq. 39).

The a nity-based version of the cycle free energy (ref. Eq. 2) is identi ed
with this physical picture, providing ties between thermoginamics and irreversibility.
Namely, the steady state weight of a cyclic path in state spads exponentially biased

by free energy expenditure

P (O —e (OkeT
P ()

Such an emphasis on cycles is consistent with the ability féwcalized recti cation to

(55)

induce global non-equilibrium currents. As long as(C) < 0 for a cycle, energetically
uphill actions can be statistically biased forward. Compar this view to the macro-
scopic \power stroke" view of thermodynamics, which forbisl autonomous processes
that require an observable increase in free energy, i.e. a enascopic activation, to
function.” That is, mechanical work in a power stroke model is generatezhly by
means of a continual expenditure of free energy. RBM requ&rehe much weaker
condition based on Eq. 55, and thus, RBM is a natural approador basic molecular
processes.

The generalization of cycle free energies to path free enesyis somewhat less
inspired from macroscopic thermodynamics and instead is $&d on kinetic relations.
The anity-based path free energy (ref. Eq. 24) allows a detded description of

irreversibility, via [47]

P(P) _ . e
G R (50)

Related advantages of this formulation for the free energypeenditure are discussed

"The fact that a power stroke has rather specic kinetic and thermodynamic characteristics,
compared to general stochastic processes, is a key motivati for the de nition of a power stroke in
Section 3.5.
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in Section 2.2.2. An alternative, though not preferred, choe for the path free energy

is the \physical" free energy di erence (ref. Eq. 16)

wi(P)
wi(PR)

which is more directly measured by examining short time pr@mation outside of

UP)= kgTlIn (57)

steady state® The two are simply related by

_ Pl (1)
(P) UP)= kgTlIn m (58)
for initial and nal states x; and x;, respectively. Transitions can satisfy U (in

the sense of relative magnitudes) if both Uj kg T and the endpoints of the steady
state distribution are not exponentially di erent. Since these conditions frequently
occur for macroscopic processes, intrinsic irreversibjliof macroscopic free energy
transduction is sensible, and the two versions of the free engy do not need to be
distinguished. The asymptotically long trajectories in wctuations theorems have a
similar correspondence between the two free energies.

The existence of a free energy potential (either of the(x) or U(x) variety) is both
natural and useful in the study of nanoscale systems coupléal a nite number of
free energy sources (ref. Section 2.2.4). However, despite ubiquity of potentials,
the degree that a potential a ects steady state ow should nbbe underestimated. A
primary consequence is that a regioR with a potential (x) is a boundary driven
process (this is discussed for a reaction network in AppemdA.2). Essentially, the
existence of a potential (x) in aregionR implies that the irreversible heat production
rate Qi associated withR reduces to boundary terms. For a continuous system,
de ning the thermodynamic force™ 7 and the steady state currentT, the kernel

J in the integrand for Q;, reduces to a divergence

= Jryr = r T (59)

8When U is globally derived from a potential U(x), the Boltzmann distribution of U(x) provides
the equilibrium distribution. This is of course consistent with U(x) being the free energy of the
guasi-equilibrium state x.
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where the steady state condition™ J =0 has been used. Eq. 59 makes clear why
regions with a potential are boundary driven.

Boundary driven processes are quite common in practice, e@ccurring in all dif-
fusive processes driven by a nite number of fundamental chgs (ref. Section 2.2.4).
However, a special type of boundary driven process, which \edel a \recti ed pro-
cess," frequently describes di usive transport in hanostéa biological mechanisms. A
recti ed process in a regiorR is de ned as a boundary driven process that supports
probability current at two boundaries, @R; and @R ,, that are separated in state
space. By Eq. 59 and Eqg. 28, the free energy expenditure andrremt in R can
be interpreted as a boundary recti cation phenomenon if onboundary is held at a
higher (x) potential than the other. Indeed, if the boundaries in a reited process
are de ned as equipotential surfaces of (x), then probability current between the
boundaries is always recti ed to ow towards the surface ofdwer free energy. Sec-
tion 3.5 will use this interpretation of recti cation in the de nition of RBM, de ning
RBM in the class of processes that are suitably approximatday a recti ed process.
H. Qian has already emphasized the interpretation of rectcation in terms of bound-
ary driven processes, but recti ed processes are presendigopted for their directional
structure [66].

Due to the relevance of this point in the de nition of RBM, notice that an approx-
imate boundary driven process may not share certain featug¢hat accompany a true
boundary driven process. For example, there may not exist bodary conditions for
an approximate boundary driven process that lead to equilfum conditions. What is
shared in both cases is a typical tight coupling between theenhanical state and free
energy expenditure, by de nition of the validity of an apprximate free energy poten-
tial (x). The validity of (x) is equivalent to the statistical dominance of trajectorie
from a single free energy class, in the sense of Eq. 40, forcktmstically observed tra-

jectories. This free energy class of trajectories can be eénpreted as the boundary
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driven portion of the system. A system with aberrant trajectries pruned from the
dynamics produces an exact boundary driven system that siatically approximates

the real process. Itis in this sense that we interpret an apprimate recti ed process.

3.4 Regions of Reversibility

A useful concept to be used shortly is that of a region of appximate reversibility.
Supposing that a potential (x) exists, a local region of approximate reversibility

may be de ned for the statexg
R(Xo; )= fx:j (X) (Xo)j< ; x connected toxeg (60)

where the last condition is to ensurd (xo; ) is a connected region containing,. For
example, = kg T is such a choice, though smaller values are equally usefulucB
regions have bounded a nities between all interior points,and for su ciently small
, they can be shown to approach local equilibrium.
Consider this in the case of diusion. One-dimensional di gsion at steady state
from x = 0 to an absorbing barrier atx = L (ref. Section 3.2) has a linearly varying

probability density, with an associated logarithmic free mergy pro le

x) ()  (0)= kgTIn

(61)

If X, is de ned such that (x,) = nkgT, Brownian motion can be described by

intervals of approximate irreversibility
Xn Xn Xn 1= L(et 1" (62)

Each interval X, is (1 e ') 63% the remaining forward distance. X, ; to
the absorbing barrier, with the implication that the bounday-related irreversibility
of a purely di usive process follows from approximately rearsible regions of length

comparable to the distance to the boundary. These large regis of reversibility are
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typical of di usion-based spatial transport, and appear egn in the most severe case
of an absorbing boundary.

Regions of reversibility along a given direction of mechasal progress form the
de nitions for power strokes and RBM in Section 3.5 (thoughtie notation in Eq. 60

will be avoided).

3.5 Recti ed Brownian Motion, Power Strokes, and Brow-
nian Ratchets

The distinction between power stroke and Brownian motion #ed mechanisms in
nano-biology has frequently been done in the literature, pscially concerning molec-
ular motors [93]. Such a division is intuitively clear in map examples, but a set of
precise criteria has been largely lacking for the generalsea The NESS approach
fortunately provides several compelling criteria that carbe used for this purpose,
leading here to a set of proposed distinguishing charactstics for all of RBM, power
strokes, and Brownian ratchets.

Recall that a power stroke is intuitively a continual and diectional release of
stored internal energy that is used to push the system throigthe viscous medium
and possibly used to generate mechanical work. Free energypenditure in this case
continuously compels a power stroke forward by means of a ki®," which in this case
is interpreted as a free energy gradient that strongly biasepropagation (ref. Eq. 42).
A power stroke forbids large uctuations from providing praluctive spatial transport,
since this would necessarily imply a Brownian motion basedeuohanism® A power
stroke for characteristic spatial resolution is thus characterized by the absence of
regions of reversibility (in the sense of Section 3.4) longéhan along the power

stroke. This condition of progressive irreversibility at aresolution is a necessary

®There exist several competing de nitions for what constitutes a Brownian ratchet, and so a
particular such de nition will be adopted.

OMore properly, this would be a thermal uctuation based mechanism, but this distinction is
largely unnecessary for physical systems.
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condition for any power stroke.

The most direct method to identify progressive irreversility is by means of ex-
amining the path free energy of a representative patRps along the power stroke-!
By the assumption of progressive irreversibilityPps can be partitioned into many

smaller pathsP; that each progress a distance and satisfy
(Pi) & ke T (63)

Such a decomposition naturally arises in simple Fokker-Riak models for a power
stroke, and Appendix A.3 outlines the details for the one-diensional case. A second

necessary condition for a power stroke follows
(Pers) ksT (64)

i.e. power strokes must be essentially irreversible as a viladthis is the \power" in a
power stroke). Failure of either Equations 63 or 64 to applyignals the absence of a
power stroke. For an example that will be revisited in Sectio4.1, the di usive spatial
transport in ubiguinone has a heat production per traversathat is many orders of
magnitude smaller thankg T and thus clearly not a power stroke.

A secondary concern for a power stroke is the ability to pestiforward during
application of an opposing external force (the role of a powstroke in macroscopic
motors is often to overcome external loads). Robustness abgressive irreversibility
under a given range of external forces can be imposed as anitiddal condition for
a power stroke, if desired. However, this complication wiltot be explored presently.

The condition of progressive irreversibility in Equations63 and 64 is usually not
su cient to identify a power stroke. \Futile heat,” which is not associated with
the observed irreversibility of spatial displacements, nyaead to spurious directional

irreversibility. This concern can be alleviated in the casef recti ed processes (ref.

1Such a path may be sampled from the steady state of the system.
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Section 3.3). Approximate recti ed processes occur relagly often in many nanoscale
biological mechanisms of interest, e.g. for molecular magowith tight mechanochem-
ical coupling (ref. Section 2.2.4). A free energy potential(x) must then exist. Thus,
there is not futile heat, in the sense that free energy expeiware and mechanical
progression are tightly coupled? Given the existence of a recti ed process, a pro-
posed de nition for a power stroke is a process with progreses irreversibility along a
given direction. This de nition can be re ned (e.g. with the above condition for the
robustness under external force), but it satis es the basinotion that a power stroke
compels the system forward by a continual expenditure of feenergy.

The failure of progressive irreversibility implies that there exists a large region
of approximate reversibility in the direction of mechanichprogression. With this
motivation, a spatial motion in a mechanism governed by a réed process is said
to be RBM when power strokes are inadequate to explain the nfemism, e.g. that
the irreversibility of the mechanism is not explained by a & dominating power
strokes’®* RBM is thus de ned to be complementary to power stroke mechasms in
the set of recti ed processes. Examples of RBM mechanismsedargely consistent
with this de nition [20, 21, 36, 52]. The seeming lack of a stng biological selection
for power stroke systems, in light of the robustness of di usn at the nanoscale, would
appear to make the special condition of progressive irregdility unnecessary for the
fundamental mechanisms of nano-biology. RBM is thus conjeced to be prevalent
in nano-biology. Only when the required distance of di usig spatial transport is
large, e.g. many microns, does the failure of thermal di usih relative to drift-based
schemes truly occur.

Brownian ratchets can be compared with the above de nition laove for RBM.

The well-known Brownian ratchets, as de ned by Reimann and &hgii [69], typically

12Mechanical progression may in this case be measured by equaintial surfaces of (x).
13This de nition can be re ned for a particular set of models, but the basic notion of RBM remains
clear.

32



are taken to obey the one-dimensional reaction-di usion e@tion (periodic in some

spatial length L)

@ @), X X
1 @y @
TP kTex ex P )

with J; the i'" species spatial probability current,D; the di usion constant, U; the
periodic force potential function, andK; the periodic position-dependent transition
rate from specied to j. Brownian ratchets are restricted to those systems that in-
clude Brownian motion as an essential component, i.e. the\per stroke picture is
insu cient in a Brownian ratchet mechanism. Periodicity of the potentials implies
that nonzero cycle free energies only arise from cycles thatist around the reac-
tion coordinate (ref. Section 3.3), and these reactions cdre coupled to mechanical
movement.

The dynamics in Eq. 65 typically has a loose correspondencetlveen mechanical
progression and free energy expenditure [68], and this fagkcludes the existence
of an underlying recti ed process for mechanical progressi. Brownian ratchets
thus lack an interpretation in terms of boundary recti cation (in the sense of the
path free energy), and they are accordingly distinct from RBl mechanisms. The
type of recti cation in Brownian ratchets instead occurs inthe statistical sense of a
net drift that arises from breaking the detailed balance symetry of an equilibrium
system [68}*

It should be made clear that Brownian ratchets also generglidi er from RBM
mechanisms on a simpler basis. Namely, Brownian ratchetqjtére a periodic ratchet
potential, while RBM mechanisms do not require any such rabet potential. Ubiquinone

and rotary enzymes, for example, are RBM mechanisms that laspatially periodic

This is Curie's principle, which asserts that an e ect not prohibited a priori from symmetry
principles should be expected to occur. [69]
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potentials (ref. Chapter 4). RBM mechanisms are in this regzt more general than
Brownian ratchets.

A closing word on the de nitions for power strokes and RBM isn order. While
there exists room to improve on the above de nitions, a feate that appears to be
rm in the present approach is that power strokes are best urefstood as distinct
objects in a mechanism. A dierent approach, notably that clhracterized by the
works of Peskin, Wang, and Oster [60, 100], assumes that gextanechanisms can
be decomposed into simple percentages of power stroke andwmnian motion-based
motion.*® That is, some simple measurement provides the valuess and gy that
guantify the importance of power stroke and Brownian motionrespectively (Eqg. 52
is an example for such a measurement in a very simple settinghhese are comple-
mentary, satisfying ps+ gy = 1. While sensible in certain circumstances, such a
decomposition encounters di culty in general situations!® For example, consider the
proposed strain-induced bias ampli cation mechanism in ewentional dimeric kinesin
(ref. Section 5.1), which depends critically on the existee of both di usion and the
so-called neck linker zippering [71], the latter of which isften thought to be a power
stroke component. Supposing that this mechanism can be degoosed into Brownian
motion and power stroke components risks erroneously adssy the independence of

such components.

5In these cited works, the term \Brownian ratchet" is used to describe Brownian motion-based
mechanisms.

®Some of these problems are related to the arbitrariness of thmeasure used. A measure may be
ill tto the basic notion of what a power stroke actually enta ils.
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CHAPTER IV

UBIQUINONE AND ROTARY ENZYMES

The simplest application and interpretation of RBM arisesn two systems fundamen-
tal to cellular metabolism: the ubiquinone shuttle and rotay enzymes [85]. Spatial
transport in both systems is achieved exclusively througtermal uctuations, while
recti cation follows from reactions at the boundaries of tlermal di usion. The con-
ceptual aspects of RBM can be simply explored through thesgssems.

Simple models for ubiquinone and a rotary enzyme are discadsin Sections 4.1
and 4.2, respectively. The appearance of a recti ed procesaturally arises in these
models. Section 4.3 revisits the discussion of rotary enzgmin the case of biotin, in-
cluding a summarized account of results from molecular dymacs simulations. Char-

acteristic properties of biotin di usion are presented frm these simulations.

4.1 Ubiquinone Model, Revisited

The ubiquinone shuttle is an essential step in the biased fatated di usion of pro-
tons across a membrane barrier. Two electrons and two proterare transferred to
ubiquinone by a donor reaction near one side of the membranadataken again by
an acceptor reaction near the other side. Free energy fromishredox reaction takes
part in the energetically uphill task of building a large préon concentration gradient
across the boundary [85]. Ubiquinone's structure consisté a reactive head that par-
ticipates in redox reactions that is connected to a long, hydphobic isoprenoid tail
that gives ubiquinone the overall hydrophobic character ressary to reside in a lipid
bilayer. The model for this situation is taken from an earliepaper [20], and consists
of one-dimensional di usion of the two forms of ubiquinone &ween two reactive sites

(ref. Fig. 1). Discussion of this model will mostly be a revie of results that arise
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2D,«"x=0 UB x=L> 2A,

Figure 1. A model for the ubiquinone shuttle [20]. The ubiquinone motaile in
this simpli ed model functions as an intermediate carrier b protons and electrons
between donor and acceptor molecules on opposite sides apallmembrane bilayer.
Oxidized (UQ) and reduced U QH>) forms of ubiquinone are interconverted via redox
reactions between donor molecules (oxidized fory, reduced formDg) and acceptor
molecules (oxidized formAg, reduced formAgr). Redox reactions are assumed to
occur at a reactive site of small width around the membrane boundaries. Ubiquinone
undergoes free di usion in a coordinatex between the two boundaries at locations
x =0 and x = L, and this di usion is recti ed by non-equilibrium redox reactions
that drive the ow of electrons from donor to acceptor molecies on average.

from the solution found in the earlier paper [20].

Ubiquinone is modeled to be a spherical particle of radil® = 0:75 nm, immersed
in a lipid medium of viscosity =25 cP (the approximate viscosity of an oleate lipid
medium). Viscous drag on ubiquinone is thus given by the Stek formula Eg. 43
Parameters for this model can be derived on the assumptionahthe ubiquinone tail
is wrapped around the hydrophilic head in a compact struct@, e.g. as a shield to
the hydrophilic core. However, molecular dynamics simulains suggest ubiquinone
di uses with the long isoprenoid tail in an extended structue [84]. The assumptions of
the simpler spherical model are not severe in terms of ordefr magnitude estimates,
since diusion will be demonstrated to be mostly transparenfrom a free energy
standpoint.

The free energy di erence that drives ubiquinone is given assual by the contri-

butions of standard redox free energy potentials and by coaatration terms. For the

1The Stokes formula can be considered an order of magnitude @mate.
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donor reaction, ubiquinone is reduced with free energy (peeaction)

[Do?[UQH,]
[DrI?[UQ]

where [ ] are concentrations, and G(DO) is a pH-dependent redox free energy. The

Gp= G®+kgTln (66)

acceptor reaction oxidizes ubiquinone with free energy (pesaction)

[ARTPUQ]
[Ac]?[UQH:]

The total free energy for the ubiquinone cycleis = Gp + G, and satis es

Ga= GY+kgTln (67)

< 0 if the process is spontaneous in the forward direction.

The di usive motion for both oxidized and reduced forms of uiguinone are gov-
erned by two purely di usive Fokker-Planck equations with pobability densities g(x)
and f (x), respectively. The small boundary layer of length near the membrane

surfaces interconverts these forms by reactions betweeneetive chemical states

Xo = f(0) XL =f()
(68)
Yo = 9(0) Yo =g(L)
such that di usion is biased by the boundary chemical kinetis
_ of .
Xo = oXo+ oYo+t D@)&Qt)
_ @g,.
Yo = oXo oYot D@SOJ)
(69)
f
Xy = IR D%}gl-;t)
Yo = X WY D%g“”

with rate constants consistent with Equations 66 and 67. Sation of the steady state

can be done with straightforward algebraic manipulationsral will not be provided
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here. The natural di usive rate constant
r = D=L (70)

arises in the steady state solution, and the rapidity of di wsion is characterized by
the fact that r is physically many orders of magnitude smaller than the chaoal
reaction rates. Ubiquinone in this model thus di uses betwen the boundaries many
times before partaking in a chemical reaction. The use of ecéve states in Eq. 68 is
consistent with a reaction-limited model.

Despite the rapid transport of a ubiquinone between boundess of a membrane,
this motion is highly reversible in nature. Consider the ireversible heat production
rate Q;r due to non-equilibrium di usion. Evaluation of Q;, for a given ubiquinone

form reduces to a boundary term (ref. Eq. 59)

Qrr = J(ksTInps(0) ke T Inps(L)) (71)
=J(@©O @wy=J
where is the heat production associated with the steady state trarsal of the

membrane. Substituting the steady state solution into Eq. ¥, the free energies for

di usion in the reduced and oxidized species are

t=ke T =( ¢(L) (0)=ksT

L( ot o) n 1+ ol L+ )

=1+ rC o+t ) rC o+ )

(72)
omke T =( (L) 4(0)=keT

L( ot o) n 1+ ol L+ L)

=1+ rC o+t L) rC o+t )
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Assuming thatr is much larger than the reaction rates, Eq. 72 is approximalie

tC o+ o) ol L+ L)

e T rCo+ L)

(73)
_ L( ot o) ol L+ 1)
s=ke T rC ot )

Thus, the characteristic heat production due to non-equitirium di usion is here
several orders of magnitude smaller thakg T per cycle, with a corresponding irre-
versibility e “*&T of the same magnitude. The concentration terms for each form
of ubiquinone in Equations 66 and 67 can accordingly be appimated by constants,
and the ubiquinone shuttle from a free energy standpoint agars to be a simple
intermediate chemical state.

The characteristic heat production rateQ;, can be compared to other character-
istic heat production rates in ubiquinone's di usion. If ubquinone was a uniformly
moving body at the characteristic di usion velocity vy = L= gy = 2D=L, then the

frictional dissipation rate Qunitform (ref. Section 3.1) i$

Quniform =V (74)

BM
i.e. a large heat production rate of Rg T per diusional time gy . The still larger
(and primarily reversible) heatQ = kg T= due to thermal uctuations is of order

kg T per nanosecond. These quantities satisfy the strong inedtias

Q— Q-uniform Q-irr (75)

Heat production due to Brownian motion by far dominates othecharacteristic scales,
as usual for nanoscale mechanisms, while the relative langss ofQunitorm IS due to

the reaction-limited nature of di usion.

2Quniform IS @ measure of the the minimal irreversible heat productionof a uniform power stroke
before di usive motion becomes the dominant mode of transpd (e.g. ref. Eq. 52)
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4.2 Simple Rotary Enzyme Model

The analysis of ubiquinone is similar to that of the rotary emymes [20]. Rotary
enzymes are exible, chain-like prosthetic groups that falitate the transport of re-
action intermediates between spatially separated cataligt regions on a much larger
protein (for simplicity, reactions during di usion between catalytic sites are ignored).
These occur in several varieties, including biotin, lipoame, and phosphopanteth-
eine [85], each of which has a speci ¢ reactive termindsRotary enzymes all have
a low molecular weight, equivalent to only a few amino aciddyut their extended
structure exaggerates the e ects of drag from the surrounay aqueous environment,
such that an approximate di usive interpretation of motion is possible.

A simple model for a rotary enzyme replaces the reactive headth an overdamped
particle in a three-dimensional conservative force eld U, with U derived from the
entropic and enthalpic contributions of the exible chain? In this manner, the exible
portion of the chain is treated in a mean- eld sense. The calgic sites that support
chemical changes of the head correspond to a set of two-diraemal surfaces ; on the
protein, where the forward sense of the reaction is directébm catalytic sitei toi + 1
(excepting in the nal reaction of the periodic chemical cyle). The rotary enzyme's
chemical state is similarly ordered, with the reaction beteen chemical states and
i +1 occurring at ;.

Since the entropy production kernel for such diusion redues to a divergence
(ref. Eq. 59), irreversible heat dissipation due to the ; !  j;; diusional mode is a

boundary term

Z Z
Qn(i! i+1)= i dS; ifi dSiw (76)

i i+1

with forwardly oriented (in the direction of the reaction) surface elementsfS;, the i™"

3Phosphopantetheine is also known as a long group in coenzynie
“4E ective drag tensors and di usion tensors of the head also fave contributions from the chain.
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species NESS chemical potential;, and current densityf;. Like ubiquinone, reaction
rates may be considered much slower than di usional timesueh that approximate
equilibration of a di usive state occurs and free energy exgnditure due to di usion
is small. Of course, if diusion tends to get trapped in e ecive bound states at a
catalytic site (neglected in the above model), a more detaill treatment is necessary.
The simplest variant of the catalytic site model is that of a igid rotor with a
single rotational degree of freedom that di uses between two catalytic sites, e.g.
1=0and ,= . This model can be mapped exactly to the ubiquinone model in
Section 4.1. Supposing di usive forces alone, basic estites of the di usion time to

subtend this angle are of roughly of order nanoseconds footin or lipoamide®

4.3 Biotin Rotary Enzyme Molecular Dyanmics Simula-

tion
The simple rotary enzyme model in Section 4.2 is useful for ttining free energy
expenditure, but a proper explanation of motion is lacking.For instance, there are
at least two di erent limits for a rotary enzyme: free thermdly driven di usion (sti
chain with a loose pivot) and discrete conformational di ugn (transitions between a
discrete number of bond angles along the chain). Each of tleegrovides a potentially
di erent characteristic timescale for di usion.

In this interest, a molecular dynamics simulation of the bitn rotary enzyme
(biocytin) was done to probe its behavior. Biocytin is a bianhylated lysine amino
acid (ref. Fig. 2) and functions as a carrier of activated CQ[85]. Several informative
results from this simulation are given in the following seains. The lipoamide rotary
enzyme is structurally identical to biotin with respect to s chain, and consequently,

many of the results are expected to apply to lipoamide as well

SEstimates can be derived from a bead-model assumption [16].
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Figure 2: Biocytin is constructed by a peptide linkage between the amo acid lysine
and biotin. The distal ureido hydrogen (attached to nitroge) on the reactive head
can be exchanged for a carboxyl group, providing a means foifacilitated transfer
of CO,. The base of lysine connects to the remainder of the proteihrough peptide
linkages.
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4.3.1 Simulation Details

To investigate the dynamics of the biotin rotary enzyme in tle presence of water,
two molecular dynamics simulations of 8 ns each were perfoeth using the NAMD
package [61]. A 2 fs timestep was used. Rigid bonds were takenhydrogen atoms.
An all atom OPLS force eld parameter set (dated November 2@) governed the
dynamics of water and lysine portions [38, 53], with additimal OPLS parameters for
biotin from a di erent source [49]. The method of parameteration for the rotary

enzyme is brie y discussed in Fig. 3.
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A collection of 798 TIP3P water molecules made the aqueousvéonment [51].°
Cubic periodic boundary conditions were applied, with a péydic length approxi-
mately 2912 nm that was determined by an initial simulation at tempeature 298 K
and pressure 1 atnd. An initial thermalization unique to each of the two simulations
was done at xed volume for 100 ps, with subsequent simulatis done at xed energy
and volume. Actual average initial temperatures vary betwen 297 to 302 K, with a
positive drift of roughly 2 K over 8 ns. Initial average (grop) pressures range from
roughly 15 to 85 atm, with a drift of roughly 40 atm® These conditions may vary
too greatly to form precise estimates, but examination of bcytin's motion did not
reveal a reason to question order of magnitude estimates.

A neutral variant of the biocytin was used for the model, whex the amine and
carboxyl groups at the base of the lysine portion were repled with neutral nitrogen
and carbon atoms, respectively. The four atoms that constite the base (hydrogen,
two carbons, and a nitrogen) of the rotary enzyme were xed igspace to simulate
attachment to a much larger body (a protein). The initial conguration of biocytin

in each simulation resembled the upright con guration in Fg. 2.
4.3.2 Results

The qualitative motion by biotin in both simulations displayed several expected traits.
For example, the carbon-carbon bonds in the chain have a caherable dihedral inter-
action that xes their position to an e ectively discrete number of states at the given
temperature, while the rigid peptide bond structure has ralively signi cant angular

freedom for rotations about the bounding carbon atoms (thikas been checked, e.g.

5The TIP3P water model has its own di culties. For example, th e self-di usion constant of
TIP3P water as used is already factor of 2 too large comparedd normal water [51].

"This is not so far removed from the expected 18 nm maximum length of biocytin, but this
length is expected to provide su cient room to avoid strong self interaction through the periodic
boundaries.

8Estimates of pressure uctuations can be estimated to be roghly 270 atm in magnitude. Pres-
sure estimates for small, essentially incompressible sysins are expected to uctuate greatly.
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Figure 3: Construction of the parameterization for biotin follows fom the patching
between three regions: (A) the lysine residue, (B) the pepte linkage, and (C) biotin.
If (B) is assumed to locally resemble a repeating glycine ppleptide, parameterization
from available sets for each region can essentially be takieom known parameter sets.
Where there is an ambiguity in or a lack of a given interactiomn the separate regions
of a patch (this is particularly troublesome for dihedral iteractions), preference is
given towards maintaining regions A and C over region B.

by investigation with the ab initio program GAMESS [79]). Motion is thus charac-
terized by three primary e ects: discrete changes betweerga@librium positions of
carbon-carbon bonds (roughly occurring somewhere in theaih several times every
100 picoseconds), di usion due to the partial rotational feedom of the peptide bond,
and di usive uctuations contributed from the nite rigidi ty of the carbon-carbon
bonds. The latter two e ects appear to be signi cant for the ne di usive tting of
the reactive head into catalytic site, while global di usion appears to be primarily
due to changes in the carbon-carbon dihedral angles. Di um of the reactive head
across essentially its entire range of motion was observeddaach of the 8 ns simula-
tions, such that a potentially successful di usive searchof a nearby catalytic site is

expected to occur on the order of tens of nanoseconds. Globausion thus occurs

on a slower timescale than the perfect rotor at the end of Séath 4.2.
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A measurement of interest is the e ective rotational di uson constant for short-
time motion. The e ective rotational di usion constant for the reactive head gives a
characteristic time for the head to explore the immediatelavailable state space. This
measurement was performed by creating a normalized vecta(t) from the central
(alpha) carbon of the lysine base to the center of the biotindad (taken to be the bond
adjacent to the two heterocycles), and then measuring the rae angular deviation of
this vector in increments of =200 fs. If the time increments are su ciently small,
the rotational di usion constant for isotropic rotational di usion (rotational di usion

constantD) on a sphere is [4]
i A ) jatt+ ) A% 4D (77)

This \point" measurement, done in both simulations, is foud to beD = 0:87 rad®=ns,
with a relative di erence between simulations of approximiely 2%. This measure-
ment can be compared to the histogram of the variablg #( )j?, which is exponen-
tially distributed in the case of pure rotational di usion. Fit of an exponential to
such a histogram is produces an estimate &f approximately 5 to 8% lower than
the point measurement (ref. Fig. 4), with again the two simwtions producing close
results. Again, di usional searches of the local state spawvith a timescale of several
nanoseconds is expected. Note that a di culty with the rotaional di usion picture
is that biotin occasionally wraps around to bring the head raa the base, amplifying
the e ect of spatial uctuations on angular measurements. Aditionally, this measure
misses any anisotropy of di usion that may be signi cant in he mechanism.

In short, these results support that global di usion is primarily governed by di-
hedral bond angle transitions, with signi cant local exibility of the chain for each
of these dihedral con gurations. The free energy formalisraf the previous sections
of course applies to this more complicated picture of di usin as well, and the assur-
ance of a potential (x) for the biocytin dynamics follows from the assumption that

reactions occur only at catalytic sites (ref. Section 4.2)Further analysis of these
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Figure 4: A histogram for the =200 fs distribution of j #( )j?>. Dots are bin
counts centered horizontally on each respective intervaf the histogram, while the
smooth line is a best t exponential that corresponds t@  0:8 rad’=ns.

simulations or of analogous simulations may be released imet future.
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CHAPTER V

MOLECULAR MOTORS

The diusive transport harnessed in ubiquinone and rotary Bzymes is ideal for
nanometer transport, but a typical biological cell may be may micrometers in diame-
ter and may additionally require the organization of large &sicles: The characteristic
time for di usion scales quadratically in the transport digance and linearly in the
radius of a spherical body; an increase in scale of either diese distances can lead
to problematically large di usion times. A cellular mechamsm designed to overcome
this di culty is the active transport of cellular cargo by means of molecular mo-
tors. Molecular motors consume free energy to direct motioof the cargo [91], such
that transport can be achieved in a time that scales linearlyn transport distance.
Additionally, the biased uctuating motion of these molecudar motors is responsible
in higher organisms for producing muscular contraction [98 These functions make
molecular motors worthy of the intense study they have reoed in the literature.
The molecular motors kinesin and myosin V have become key gs in the study
of molecular motors in general [93, 5, 92, 6, 8], owing in pad their interesting prop-
erty (processivity) that a single motor can linearly transrt attached cargo for long
distances before dissociation of the motor from its track. [ie essential con gurational
aspects of forward motion have been established for convemal kinesin and myosin
V as a \hand over hand" stepping pattern [103, 101]. This pa#rn is reminiscent of
ordinary human walking, since the track binding domains (reds) alternatively bind
in front of one another. The detailed physical mechanism uwedlying these motors

has long been a matter of debate, particularly concerning ¢hrelevance of Brownian

1The axons of certain nerve cells are macroscopic in length.
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motion versus power stroke principle$. This chapter pursues the argument that RBM

is a likely candidate for both motors.

5.1 Recti ed Brownian Motion Model

The power stroke description of molecular motors is charaatzed by a large con-
gurational free energy decrease associated with the motioof a tethered head in
the forward direction, e.g. as favored in [92, 81]. Di usiorfunctions here only in
an assisting role to orient the head appropriately for bingig. In the case of ki-
nesin (ref. Fig. 5), adoption of the power stroke view was seusly challenged by
the determination of a small associated neck linker zippeig energy (\power stroke"
energy) [70], with an associated \power stroke" force geragion smaller than that
seen in experiment.

This failure of power stroke arguments to predict this so-di@d ampli ed step-
ping bias does not violate thermodynamics, but rather, emgsizes the role of whole
cycles in small system thermodynamics (ref. Eq. 55). The exence of essentially
irreversible transitions associated with bound states, @. phosphate release after
ATP hydrolysis, in either kinesin or myosin V provide signicant contributions to the
overall free energy expenditure in a typical stochastic tjactory. Indeed, if the free
energy expenditure, via Eq. 56, due to bound state transities is comparable to the
total free energy expenditure in a standard mechanical cyglthe residual free energy
remaining for spatial motion need not be large. A proper acaot of irreversibility
can in this way be used to discount a power stroke scheme as fir@nary contributer
of irreversibility in a mechanism. Such an analysis can be de due to the \gated"
tight mechanochemical coupling of these motors [93], whicllows approximate con-

struction of a system-wide free energy pro le for an analogs system that neglects

2In the case of myosin V, recent experiments have measured disional e ects directly [82].
3Force generation is here measured in terms of the ability foa molecular motor to move against
a given external load.
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rare backwards binding events (ref. Section 2.2.4).

A recent study (included as part of this thesis) has indeed md many attractive
qualities for an RBM model of kinesin, including a simultaneus explanation for both
chemical coordination and bias ampli cation through the pesence of internal strain
between the two kinesin heads [52].The essence of this approach lies in the ability
for small e ects (i.e. neck linker zippering), which slighy change the ensemble av-
eraged position of a di using tethered head, to exponentigl change the frequency
of relatively rare binding events. In short, a di using headbinds forward most often
because it visits that site most often, and these visitatiomprobabilities can be con-
trolled with a weak neck linker zippering energy. The detasl of this argument are
presented anew in the latter part of this section in the casef anyosin V, but the
essential picture for kinesin is presented in Fig. 5. It is honsigni cant that experi-
mental investigations may have also determined an entirelsimilar RBM mechanism
for ribosomes [48], where a small energetic di erence betwethe acceptance of cog-
nate tRNA and near-cognate tRNA is proposed to induce a spaii shift in the tRNA
position that ampli es relatively rare di usive uctuatio ns of a tRNA molecule.

The details of chemical coordination and bias ampli cationin myosin V (ref.
Fig. 6) are similar to kinesin, in that both e ects may be simidtaneously explained by
the presence of internal torques between the two heads. Thapproach presents an
alternative model to power stroke models of myosin V. For tls& purposes, consider
an actin-bound myosin V head (head 1) that anchors the othefige free myosin motor,
such that the tethered head (head 2) is unbound and able to dise. The present
RBM approach to myosin V requires that this intermediate tehered head 2 must
strongly prefer forward binding over backward binding if fovard motion is to be
ensured. This can be measured by the ratio of forward to backwd binding rates,

termed the bias , for the diusing head 2. In kinesin, predicts the bias from

“Notice that this model appears in Chapter 6.
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an intermediate \parked state" [28, 1], though the role of in a detailed myosin V
mechanism may di er. Demonstrating that is large for our RBM model, using only
small changes in internal con guration, is done presently.

As in previous models of myosin V [45, 96], interaction betwa these two heads
occurs in part or in whole through the elastic strain of the mysin necks (the exibility
of the hinge connecting the two myosin necks may also be calesied). The free
energiesE () and E® for the elastic strain when head 2 is in a forward or backward
binding con guration, respectively, are functions of the agles ; and », as depicted
in Fig. 6. E® is related to E() by the exchange of ; and ,. The rate for head 2 to
bind either forward or backward is assumed to obey a simplerfo of Kramer's rate
law [30]

k= koe V(1 2%keT (78)

such that the binding rate k is proportional, up to a multiplicative constant kg, to
the Boltzmann factor of the elastic strain free energyJ( 1; ») for a given binding
con guration. This approach predicts that a symmetry statewith ; = , will bind
forward or backward with equal probability.

Suppose the existence of two nucleotide-dependent stateattimpose given values
on ; and ,: an uncocked state with angley, and a cocked state with angleg +
that is lower in energy by the value . Some may refer to the uncocked and cocked
states as pre-power stroke and post-power stroke statesspectively, with being the
power stroke energy, but this view will be seen not to be apppaate for the model
at hand.

Using Eqg. 78 to determine binding rates for a given pair nuakide states, the total
rate of forward binding is taken to be the weighted sum of forard rates from the
uncocked and cocked states, such that cocked states arés T more likely. Backwards

binding is treated similarly. With head 2 restricted to be inthe uncocked state, the
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bias is
e EM(oi0)=ke T 4 g=kg T @ EM( o+ | 0)=ke T

= e E(b)( 0; 0)=kg T + e=kBT e E(b)( ot ; 0)=ke T (79)

where the overall prefactorky in Eq. 78 vanishes for this simple model. Upon sim-
plifying Eq. 79 by identifying through symmetry E(( ; o) = E®( ¢; o) = Eg, the
general expression for the stepping bias in the present cert is

1+ ekeT g [EV(o+ 5 o) Eol=keT

T 1+ e*sT @ [E®(o+ ; o) Eol=ksT (80)

A few assumptions on the system simplify Eq. 80 into a form mersuitable for inter-
pretation. The rst of these is to suppose dominance of the &btic strain free energy
terms, in the sense that the numerator is approximated bg=<eT g [E® (ot i ol=ka T
while the denominator is approximated by 1. This assumptionelies on the existence
of large elastic free energy changes upon variation of and , (demonstrated for
a particular model at the end of this section). A further assoption that the Tay-
lor expansionEM ( o+ ; ¢) Eo T is valid, whereT = %( 0, o) is an

e ective internal torque, nally reduces Eq. 80 to

=kBT

e el “keT (81)

The usual factore¥# T is recognized as the estimate of the stepping bias in the pawe
stroke scheme (ref. Appendix A.3 and Eq. 107), such thal 8T is interpreted as
a bias ampli cation factor. Eq. 81 demonstrates, as with kiasin, how the stepping
bias of a system may depend strongly on the presence of intakstrain (cf. [52]).

To assume that the internal torqueT is a large quantity is consistent with the
known coordinating role of internal strain, which has beenxperimentally observed
in the form of force-activated chemical gates within a myosihead [95, 63, 94]. The
chemical states of each head are in this manner kept out of eato prevent the rapid
dissociation of myosin V from actin and to keep myosin V highlprocessive. Large

T would then also lead to bias ampli cation through Eq. 81. Theobservation that
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bias ampli cation and coordination may be tied to a common aase (internal strain)
is a compelling feature of an RBM approach to myosin V.

How does this ability for forward motion change in light of a yen retarding load
on the system? Power stroke models address this issue by asisig that the anchored
head domain has a highly energetic change in conformationathpushes the system
forward - an external force is overcome directly. Howeverhé analysis of an RBM
model is not so singularly focused. Estimates of the abilitipr myosin V to oppose an
external load require analysis of, among other things, theids ampli cation factor,
the susceptibility of the elastic necks themselves, and theatural unit of torque for
the cocked stateT = = . (In contrast to power stroke models, an RBM model
of myosin can take small, such that T can readily become comparable to the
torques generated on the neck by several-piconewton extalrorces.) Estimates of
these factors appear to allow a strong RBM component in the raleanism of myosin
V. For instance, if we assume a temperature 300 K, =10 degrees, and a single
myosin neck length of 30 nm, then a moderate energy of= 2:5 kg T is su cient
for T to oppose 2 pN loads on a myosin neck. Even when this estimateld, bias
ampli cation factors can ensure stepping remains forwardfor similar reasons that
forward bias may persist in Eq. 81 even if< 0.

As a numerical example of bias ampli cation in myosin V, theihk model and
parameters adopted by Lan and Sun are used [45] (that of Vilias also viable [96]),
such that the elastic energy of the necks is assumed to be givgy minimization of
the energy function

X o h i
El= ke T a_% *i(l) *i(l)l + *i(z) ﬁ(z)l g
i=2
+C(HD; £@) )

Whereﬁ(” is the displacement vector of the™ link for the myosin neck bound to head

j, a=5:0nm is the length of a single link for a neckl, = 120 nm is the persistence
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(1). (2) . . P 6 (1) _ P 6
length of the necks, andC(+"”; ) is a constraint such that =, 7 = 1,

@
All vectors are taken, for simplicity, to exist in a two-dimensional plane. The angles
1 and , from the previous discussion are identi ed with the angle ahe rst link in

each chain (ref. Fig. 6), and these act as constraints on themmization of the energy
Eq. 82. The \vertical" uncocked angle o = =2 is chosen for de niteness. Estimates
of T for this particular model provide T  13kg T=rad, such that bias ampli cation
factors of an order of magnitude readily arise from of a mere ten degrees. Hence,
the small con gurational changes due to the cocked state primle a bias ampli cation

that can readily account for a signi cant order of magnitudeor larger discrepancy

between the power stroke estimate and the actual bias
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Figure 5: Kinesin moves along microtubule in the plus direction by a#irnately
attaching each head to the beta-tubulin subunits (light orage), producing a 16 nm
translation for a given head and a 8 nm translation for the cd¢ar of mass of the
kinesin dimer. The two heads are approximately 6 nm in diamet and can together
move forward against externally applied retarding forcesputo 7 pN [6]. Kinesin
is attached by a polypeptide neck linker (black lines) to thecoiled-coil stalk, which
binds cargo. This neck linker can either be free (left headpp) or bound weakly to
a head in a zippered state (left head, bottom), depending oriné nucleotide state of
the head. Entropic and enthalpic contributions from the nek linkers and the coiled-
coil provide tensions between the heads. lllustrated abowethe spatial displacement
step, occurring by means of strain-induced bias ampli cabin. In the unzippered state
of kinesin, the probability distribution (the unimodal curve) of the kinesin head does
not favor either the forward (plus end) or backward (minus ed) binding site, by
symmetry. However, the small change induced by neck linkeippering is ampli ed
by an exponential relative increase of the probability distbution near the forward
binding site. This is related to the slope of the distributio near bound states, i.e.
related to a force. Since a kinesin head visits the forwardeimore often, irreversible
binding (recti cation) can keep the head at the binding siteto produce a forward
step. Power stroke models cannot explain such a mechanisnuedo the weakness of
neck linker zippering.

54



Figure 6: An illustration of myosin V head domains bound to actin, with semi-
exible necks meeting at a common hinge and myosin head domaibinding 36 nm
apart at the actin pseudo-repeat length. The forward sensd motion is to the right,
and the labeling of the angles corresponds to forward bindjn(backward binding
would exchange the order of; and , in the diagram). Given these angles, the
elastic free energy may be determined for a given model of theyosin necks, e.g.
that of Lan and Sun used in the text [45]. Notice that this pictre does not take
into account the observed ability for myosin V to bind at len¢hs unequal to the
pseudo-repeat length of actin [8, 45], but this complicatirodoes not seriously a ect
the argument in the text.
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CHAPTER VI

RECTIFIED BROWNIAN MOTION MODEL FOR
KINESIN

The approach to bias ampli cation models in Section 5.1 is stiently complex to
present the basic idea that boundary recti cation can prodae a stepping bias much
larger than power stroke thinking can provide. A more devefied model was devel-
oped by us in the case of kinesin [52]. Bias ampli cation in kesin is distinct from
myosin V in that a rather large entropic component (due to the neck linkers, ref.
Fig 7) is expected to contribute to internal strain! Thermal uctuations are thus
responsible for both elastic potentials and motility.

The remaining sections in this chapter reproduce (essentiaverbatim) this work
done for kinesin in [52]. Motivation for the kinesin model fitcows from known struc-
tural and chemical functional elements (discussed in Seati 6.1). An experimentally
characterized force-dependent chemical gate, which we &br-gate, serves in this
model to both ensure chemical coordination and to explain ¢éhtapering of kinesin's
velocity for increasing external load forces. The model &# is split into two di erent
portions: the bias ampli cation mechanism that determinesstepping bias (discussed
in Sections 6.2 and 6.3, with many of the details for the full mdel in Appendix B.1),
and the waiting mechanism that determines the rate of ATP hyrblysis for a head
(discussed in Section 6.4). This separation is possible dte the rapidity of the
di usive step under a wide range of external loads. Concludy remarks appear in

Section 6.5.

LEnthalpic contributions also have reason to arise from unwiding of the coiled-coil stalk that
binds cargo, but these contributions were mostly ignored inthis kinesin model.
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8 nm

Figure 7: A doubly-bound kinesin dimer oriented with the microtubuleplus-end to
the right. The N-terminal kinesin heads can bind to tubulin B3, 34, 93, 39]. The
kinesin heads are connected by two neck linkers, 15 amino acids (a.a.) each [71],
and these neck linkers end in a coiled-coil \stalk" that canannect cargo through light
chains and mediate tension, indicated by (the load force). Entropic considerations
for the neck linkers suggest a thermal forcdsy, , which resists neck linker extension.
A microtubule-bound head in an ATP or hydrolyzed ATP (ADP.P) state will initiate
immobilization (zippering) of its neck linker onto itself through a series of hydrogen
bonds, schematically indicated by hatched lines. This gue outlines structures found
in Protein Data Bank le: 11A0 [39].

6.1 Structural and Chemical Functional Elements

Experiments have isolated several components that partpate in kinesin's forward
cycle. Our model incorporates a number of these componentsraugh simpli ed

representations that are appropriate for our level of dethi Here, the more involved
discussion of our model is preceded with several brief trea¢nts of the elements in

kinesin's modeling.
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6.1.1 Neck Linkers and the Coiled-Coil Neck

Of central importance to the understanding of kinesin's cye are the elements that
connect the two kinesin heads, namely, the two non-rigid nlkedinkers that together
merge into a fairly stable coiled-coil neck [71]. The coilecbil was originally supposed
to provide, through its unwinding, an essential ingredientor the existence of kinesin's
forward motion, but experiments do not support such a theory73]. Neck linkers are
then assumed to provide the leading functional contributies, in part by forming
entropic springs that generate a force by virtue of thermal uctuations alone. These
entropic springs supply an \internal strain" that guides knesin's functioning [13], e.g.
by coordinating chemical states through activation of T-gee (ref. Section 6.1.4).

For the neck linker entropic force, a model from the study of@ymers will be called
upon to approximate our 12 15 amino acid (a.a.) neck linker chain. Though the
length of a neck linker is far removed from the length of mostglymers, the 12 15
neck linker units may already be su cient for common polymerstatistical mechanical
chains models to apply when uctuations are included (e.g.he variance of extension
for a forced, di using neck linker is allowed to be comparablto the mean extension).
The most appropriate standard model for a peptide backbone the freely-rotating-
chain [18], due to the axial nature of peptide bonds (if the bw angle is very small,
then results are known as the worm-like-chain (WLC) [42, 7¥]Instead, an e ective
freely-jointed-chain (FJC) model is used for the sake of spiicity [43, 18]. The
reduction of a chain force to an e ective FJC or WLC is not uncoomon, e.g. for
DNA [10].

A computationally friendly form of the FJC force model utilizes a rational poly-
nomial approximation that gives the correct asymptotic reglts for large and small
extensions of lengthx [9]:

I

a3 (83)

fo0= ‘21K (x=Na); K( )
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where s the relative extensionx=Na, a is a link length for one amino acidN is the
number of amino acids in a neck linker, and is a tting parameter to set the correct
linear regime dependence. The linear regime force constadik g T=N&, can readily
scale to several piconewtons per nanometer for parameteessdribing peptide bonds.
The x-integral of this force function provides a free energgotential that de nes the

single-chain Boltzmann probability density, y:

N (X) = ZNle N G (x=Na)
(84)
G() 32 @ ?
where Zy is a normalization constant. Expected values for the modelapameters
are of order unity and the virtual peptide bond lengtha  0:38 nm (compare to
a = 0:35 nm for the axial distance per amino acid in a-sheet).

Though coiled-coil unwinding was not found essential for ghforward motion of
kinesin [73], steric aspects of the coiled-coil and its umding contribute substantially
to bias calculations. Our modeling assumes that the width dhe coiled-coil (possibly
partially unwound) provides a given length d to the head-to-head extension in addi-
tion to the neck linkers. Acting upon the one-dimensional mresentation to be used
for kinesin's di usive step (akin to a reaction coordinate,ref. Section 6.2 and Ap-
pendix B.1), the coiled-coil prompts modeling of the tethesd head's di usion within
an e ective reducedinterval, [ d;d =[ do+ d;dy d], whered, 82 nm s
the original binding distance. This reduced interval mininally accounts for the extra
reach due to the width of the coiled-coil. Notice that thoughthe coiled-coil exten-
sion in the real system will dynamically change in response entropic neck linker
forces, this time-dependent e ect is ignored in our model. @ model similarly ig-
nores the restoring force due to coiled-coil unwinding (aaic element that produces

no intrinsic force).
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6.1.2 Neck Linker Zippering

Estimated only to possess a free energy di erence of 2 kg T [70, 99], neck linker
zippering is surprisingly essential for kinesin's procass motor function [71, 7, 87].
Our modeling of neck linker zippering borrows from work done protein folding,
speci cally the formation of -hairpins. From statistical-mechanical investigations,

-hairpins exhibit bistable cooperative behavior due to copetition between hydro-
gen bond formation and the con gurational entropy of a solved chain [17, 55, 54].
This bistability inspires a nite two-state zippering modd (the kinematics are made
more precise in Appendix B.1), where the state with severabfmed hydrogen bonds
is labeled the \zippered" state, and the absence of zipperdabnds is labeled the
\unzippered" state.

The basic purpose of zippering is to immobilize neck linkemks in the micro-
tubule plus direction, thus shifting the anchoring point (int of emanation) for the
microtubule-bound head's neck linker toward the forward Ibiding site. Supposing
that N, is the number of immobilized links in the zippered state, thact of zipper-
ing is modeled by a change that simultaneously shifts this ahoring point a plus-
directed distance x = N,a and reduces the number of solvated neck linker links for
the microtubule-bound head byN,.

Since the external load will tend to place a strain on the nedinker, a Bell form [3]
is taken for the Boltzmann probability of being in the zippeed state (probability P,)

vs. the unzippered state (probabilityP,)?

(85)

u — O+qu

2Notice that the notation here di ers from that in earlier sec tions. This chapter does not make
use of the a nity-based free energy.
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with .u the free energy of zippering, o the free energy at zero loadF the
external load, and ,, the characteristic distance for zippering. Our model takes
.u = N ,a, with N, the number of zippered linksa the link length, and is a pure
number. For =1, ,, is then the length of the zippered segment.

At biological temperatures,F,, = kg T=,, de nes a characteristic force oF,, 2
piconewtons if , 2 nanometers (approximately 5 zippered neck linker links).
Zippering then remains forwardly biased for loads up to 4 pN for zippering energies
of magnitude 2kg T. Reaching this force does not necessarily imply that kineshas
stalled, since a small probability to be in a zippered statean be su cient for an
overall forward bias (ref. Section 6.2 for an explanation dhis, as a result of the

ampli cation of bias).
6.1.3 Weak Binding

When a kinesin head is in the ADP nucleotide state, the bondgnstrength of the head
with tubulin is observed to be markedly lower than in other sates, and consequently,
the microtubule-bound ADP state has been labeled weak bindj (strong binding has
higher bonding strength and is associated with the ATP and naucleotide states).
Measurements were done by Uemura et al. to determine weak tstainbinding rates
when a weakly bound head is under external forcing [89, 88Jhding that a natural

forward bias exists in weak state unbinding. Our model usesmore symmetric form

of weak state unbinding rates that is directionally indepedent:
kW(F) — (1 s l) eF 3:0 nm=kg T (86)

with F the applied force magnitude. Eq. 86 approaches the rates dher internal
processes, e.g. 1505 whenF 7 pN. Such forces are attainable with entropic neck

linker tensions.
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6.1.4 T-gate

Chemical coordination between the heads of a doubly-boundhksin dimer has been
linked to internal strain activating a gate (T-gate) that prevents the binding of ATP
to the plus-end head [75, 74, 13]. This coordinating mecham allows the forward
head to remain in the no-nucleotide state until the rearwardhead releases phosphate
and detaches, thereby relieving the rearward force on therfeard head and allowing
ATP to bind. Without this coordination, kinesin would be unable to take more than
a few steps before dissociation. T-gate thus establishes amportant link between
mechanical forces and chemical rates.

Further e ects of T-gate are discussed in Section 6.4, withithe context of the

waiting mechanism.

6.2 Bias Ampli cation Mechanism Revisited

Much of kinesin's functionality can be explained by the biasmpli cation argument
in Section 5.1. Only the basic details for this argument aregain presented, such that
the parameters for the bias in Eg. 81 can be deduced.

Kinesin's stepping bias is derived from the probability fothe tethered kinesin head
to strongly bind either forward or backward once ATP has boud to the microtubule-
bound head® The likelihood of a tethered kinesin head to bind either forard or
backward is directly related to the frequency (probability for this head to visit each
respective binding site. This visitation probability may be predicted by the free
energy Boltzmann factor that corresponds to system con gations with a kinesin
head near a given binding site (this approach is similar to #t in transition state
theory).

Suppose, as described in Section 6.1.2, that a small \shifti the tethered head

3This depends on previously mentioned \parked state" in Hackiey's gate [28], which prevents a
tethered ADP-bound head from binding to microtubule until A TP binds to the microtubule-bound
head. Hackney's gate continues to provide intriguing expemental results [1].

62



probability density towards the microtubule plus-directon results when the neck
linker is in the zippered state. The required energy to ensairthis shift against an
applied external load is accordingly small up to a limitingdad value, such that zip-
pering itself remains a weak e ect. This internal strain sesitizes kinesin to the small
changes due to zippering, by the argument in Section 5.1.

A function U(x) is identi ed with the free energy for kinesin in the unzippeed
state to have a given head-to-head extensionalong the microtubule, where the one-
dimensional coordinatex is positive for extensions toward the microtubule plus-end
U(x) is assumed to be an even function ix, where evenness is motivated by the
expectation to nd approximately neutral intrinsic stepping bias for an unzippered
state (neck linker zippering would not be needed otherwise)n relation to the un-
zippered state, the zippered state free energy function isvgn through a translation
of the neck linker origin and the addition of the energy di eence  corresponding
to the zippering energy, i.e. U(x) ! U(X X) + o- Translations are su cient
to introduce asymmetric favorability of the forward binding site, such that exponen-
tially large biasing changes will appear. A translation oyl approximates the e ect
of zippering, since physically, zippering also alters thénape ofU(x) by reducing the
number of solvated chain links (ref. Section 6.1.2). Forwdrand backward binding
are de ned to occur atx = dand x = d, respectively.

Assuming that a Taylor expansion to rst order is valid for the energy function
in the transition rate, i.e. U(d x) U(d) X, then we can again derive the
expression e 7T e X*sT jnthe limit of strong biasing (up to subexponential
terms that would be used in Kramer's formula). Thus,e **kT can be interpreted
as the ampli cation factor of the naive zippering energy Bazmann term. Numerical
values of the ampli cation factor can be readily estimated.The choice x =2 nm
is made for the zippering distance, corresponding to apprioxately 5 zippered neck

linker links. = %)f(d) is related to an e ective internal strain of the system near
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the boundary. By consideration of entropic neck linker foes (Eq. 83), =10 pN is
chosen as an example e ective force. These values lead to anpéi cation factor of
130 at biological temperatures ( 1000if o= 2kgT).

The strength of this simple model is its presentation of ther@in of bias. However,
certain relevant elements of kinesin's cycle (e.g. weak &abinding and unbinding)
have been ignored for the purpose of conceptual clarity. $Sien 6.3 and Appendix B.1
resolve these shortcomings with a more detailed considamat of kinesin's functional

elements.

6.3 Detailed Biasing Mechanism

The heuristic model of biasing in Section 6.2 can be expandedo a detailed model
that considers carefully the roles of weak binding, zippeng, and entropic neck linker
forces. Elaboration on the structural and mathematical detils of this biasing mech-
anism are found in Appendix B.1. Conclusions of this detaiemodel are similar
to earlier assertions: that the rate for the di using head toweakly bind during the
biasing mechanism is proportional to the stationary probabty density ps for this
head in the vicinity of the binding site (ref. Equations 78, 10, and 118), and that
the stepping bias (F) at load F generally also depends on weak state unbinding
rates (ref. Equations 86 and 119). A convenient numerical ebrvation, that the
biases (F) for physically relevant parameters satisfy an approximat Bell form (as
in experiment [56, 6]), allows a parameterization of(F) in terms of the zero-load
bias and stall force. In this manner, all provided exampled this section are selected
to match the \measured" bias Bell form with a zero load bias ofl000 (i.e. 99%
forward) and a stall force of 70 pN.

Two useful cases arise for the parameters of the biasing magtsm: those lacking
and those retaining weak state unbinding. Elimination of wak binding e ects in the

former case emphasizes the di usional origins of bias ukd by the heuristic model.
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To demonstrate speci ¢ solutions of the modeling parametsifor both of these cases,
example parameter sets that match the measured bias are peased below.

Both of these examples share the parameter$: = 300 K, N = 13 (13 total neck
linker links), a=0:38 nm (virtual link length), dy = 8:2 nm (distance to the next
binding site), o= 2kgT (zippering energy), andks = 300 s ! (the strong bind-
ing rate constant used in Eg. 119). The remaining parametevgere made variable and
matched to the \measured" bias Bell form with the constructon in Appendix B.1:
(neck linker force constant in Eq. 83)N, (number of zippered links in the zippered
state), d (static extension of the coiled-coil in Section 6.1.1), and (a scaling pa-
rameter for ,,, the Bell length of zippering in Eqg. 85). For the case lackingveak
state unbinding, these are: =1:4,N, =4, d=4:6 nm,and =1:0. For the case
with weak state unbinding, these are: =0:86,N, =5, d=5:0nm, and =0:5.
Other example parameter sets that match the measured biasrtanly exist, but they
are not explored here. Further details for the example lacky weak state unbinding
are given in Fig. 9.

Evident in these numerical examples are the large predictediled-coil extensions.
However, this observation may not translate well into the awesponding physical
statement that large coiled-coil unwinding exists duringlie biasing mechanism. This
problem arises due to the ignored restoring forces that aremerated by unwinding of
the coiled-coil, where these forces will alter bias calctil@ns. Introduction of a force-
extension model for the coiled-coil (not an entirely triviitask) would better address
susceptibility of the coiled-coil to large extensions. Regdless of these technicalities,
a 10-fold reduction in kinesin's processivity has been atfiuted to experimental sta-
bilization of the coiled-coil (to prevent unwinding) [73],which indicates that some
coiled-coil unwinding is natural in kinesin's normal forwed cycle and should appear
in modeling. Large d values may then be reasonable.

Results of our model also indicate that the biasing mechamis remains a fast
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step within kinesin's cycle as the external load is increasge Relevant to this is the
rate for a di using head to weakly bind, with forward and backvard binding rates
kP and kP, respectively. The most rapid rate of these at a given exteah load,

i.e. max(kP?;kP), approximates the rate of the biasing mechanism's di usiaal step.

Numerical examples (e.g. the above examples) indicate th#is maximum rate

tends to not decrease by more than a factor of 20 at increasit@pds - a factor small
enough to leave the diusional step relatively fast. In comast, the di usional bias

kP=kP undergoes larger changes through the combined e ect kf decreasing and
kP increasing. Numerical examples further suggest that thesdbservations are not
drastically altered with the inclusion of weak state unbindthg events.

The combination of entropic neck linker forces and weak bim states in this
biasing mechanism provides an avenue for the explorationtbe ADP gate discovered
by Hackney [28]. Hackney observed that in the combined absenof ATP (i.e. without
zippering) and external load, the free head of a singly-bodrkinesin dimer binds to
microtubule only slowly, if at all. This situation is a \parked" state [6]. Judging
from similarities between the unzippered state in the biasg mechanism and this
parked state, e.g. that each lacks neck linker zippering, Idieney's gate should be a
consequence of long lifetimes for an unzippered-like stgtmmpare to the unzippered
zero-load state in Fig. 9). Long parked lifetimes in Hacknéy experiment may then
occur, for instance, if weak state unbinding becomes muchstar than the strong
binding rate kS. The analysis of this approach is not done here, but this patto

Hackney's gate remains attractive.

6.4 Waiting Mechanism

The biasing mechanism of Section 6.3 is primarily suitablerf describing the direction
of stepping. Since biasing remains relatively fast, the dWeimes for kinesin's cycle

are rather taken to arise from the chemical steps that occurutside of biasing -
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collectively labeled the \waiting mechanism." Some impo#nt technicalities in the
logical separation of biasing and waiting are presented indg= 10. T-gate's mechano-
chemical coupling is invoked as the principal contributerd the waiting mechanism
at rate limiting conditions, directly coupling the stress & an external load (in a
geometry similar to frame 5 of Fig. 8) to the rate at which kinsin binds ambient
ATP. Rate limiting aspects of kinesin's cycle, at either hig load or low [ATP], are
then determined by ATP binding rates.

A common element in the numerous models for dwell times is a IB&ength of
magnitude 2 3 nm that is responsible for rate-limiting behavior at extemal loads of
several piconewtons [56, 6]. Supposing that T-gate indeedanages dwell times, then
this Bell exponent characterizes the load dependence of &tg. This identi cation
is consistent in magnitude with the fact that T-gate's coorthating mechanism is
activated by internal strain on order of several piconewta A rate model, presented

in Fig. 11, is based on the ansatz chosen for a natural lifeterwithin T-gate:

(F) — RO e F r=kg T + 1 ! (87)
© Ry+1 Ro+1

with o, Ro, and 1 constants to be determined. Eq. 87 is intentionally similato
Eqg. 3 used by Nishiyama et al. [56], though Eq. 87 is aad hocway to implement
a ceiling in T-gate's ability to inhibit ATP (e.g. due to higher loads altering the
accessibility of the nucleotide pocket di erently). The pacement of (F) within our
rate model is similar to Fig. 2 of Block et al. [5], with theirk , set to zero. Additional
details are in Fig. 11.

Further development of the waiting mechanism would inappariately shift em-
phasis away from the central topics of this chapter, i.e. therigin of bias and the role
of T-gate. No doubt that a more detailed rate model could be #eloped to describe

dwell times, but this has been done many times previously.
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6.5 Concluding Comments on the Kinesin Model

Kinesin's biasing mechanism harnesses RBM principles to phfly neck linker zipper-
ing by e ectively altering boundary conditions, that is, by altering the exponentially
sensitive probabilities to visit forward and backward binthg sites. At low loads,
kinesin's step then is a process that is biased by virtual abshing and re ecting
boundaries (such boundary conditions were takead hocin a previous work [21]),
though at high loads and particularly at stall, absorbing ad re ecting boundaries
are a poor approximation. The remainder of kinesin's steppg is largely orchestrated
by T-gate, including the coordination of chemical steps anthe appearance of large
dwell times at rate-limiting conditions.

There exist several improvements to this kinesin model thathould be incorpo-
rated in future models of kinesin. The most obvious is the nddor a detailed treat-
ment of the forces that would arise from extension of the ceill-coil and neck linker
forces, e.g. done through molecular dynamics simulationddditionally, the stability
of the \parked" state in Hackney's gate that precedes ATP upake has not been di-
rectly addressed by the results of this model. Addressing @&aof these concerns will

lead to welcome re nements.
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Figure 8: Key aspects of kinesin's forward (plus-end) cycle have beetucidated
through a varied multitude of experiments, including cryoEM, x-ray structural, force
bead, and others [97, 71, 7, 75, 29, 83, 14, 41]. This proceshrie y reviewed, where
\T" labels the ATP nucleotide state, \D" the ADP nucleotide state, \ " the no-
nucleotide state, and P" the phosphate after ATP hydrolysis. The free head is
shaded to clarify motion between frames. Frames 1,2: the &d&ead weakly binds to
the plus-end binding site, leading to strong binding once AP is released. ATP bind-
ing to the plus-end head is inhibited by a coordinating meclmsm (labeled T-gate,
ref. Section 6.1.4) that is activated by the internal strain Frames 3{5: hydrolysis of
ATP in the minus-end head leads to an intermediate ADP-phospate state, \D.P "
and phosphate release alters the binding of the minus-enddtkinto weak binding,
which allows rapid release of the minus-end head from tubnli[13]. Frame 5 is to
be identi ed with the parked state in Carter and Cross [6]. Fame 6: the free head
tends not to strongly bind until ATP binds to the microtubule-bound head [28]. ATP
binding initiates zippering of the microtubule-bound hea@ neck linker, coinciding
with a large acceleration of the rate for the free head to bindnto microtubule. This
entire forward cycle consumes one ATP and moves the centermfss of the system
8 nm.
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Unzippered States Zippered States

— 0 pN load
——— 6 pN load

reduced interval (nm)

Figure 9: Plots of zippered and unzippered stationary probability desities (in
arbitrary units) vs. the reducedinterval [ d;d] (ref. Section 6.1.1 and Eq. 110), for
the case example in Section 6.3 that ignores the e ects of westate unbinding. The
use of the reduced interval, which subtracts the coiled-daxtension, hides the fact
that zippering is a small change ( 2 nm) compared to the distance travelled by one
head ( 16 nm). Zippering probabilities, e.g. Eq. 85, are not represted in these
plots. As discussed in Section 6.2, the small and decreastagls of the distribution
are responsible for the generation of large biases. Apparen these plots are the
competing in uences of zippering, which shifts the densityowards the plus-end, and
of loads, which shifts the density towards the minus end. Staoccurs when all these
e ects balance one another. The inclusion of weak state uming in the model
preserves many of the features presented here.
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Figure 10: Much of the biasing mechanism is assumed to occur in the padkgeom-
etry of frame 5 in Fig. 8, where the external load acting on thenicrotubule-bound
head leads to long dwell times (ref. Section 6.4). Howevehe free head could have,
in the time before ATP uptake, an opportunity to bind rearward during a period
when forward binding is virtually excluded (due to no zippeng). Thus, bias would
then be [ATP]dependent due to [ATP]dependence of the waitghmechanism. In (a),
a fast step is outlined that corrects this undesired backwdrstepping. Since the for-
ward head experiences strain due to the rearward-bound healP uptake is greatly
inhibited in the forward head, and thus, there exists a mucharger probability that
the rearward head detaches rst (at the expense of one ATP hydlysis). In contrast,
(b) outlines how a \real" backward step may occur once the wang mechanism has
ended, i.e. once ATP has bound to the microtubule-bound headNotice that if the
rearward head binds as in (b), the forward head is at least orehemical step ahead
of the rearward head. With a few assumptions, the forward hdan (b) may then be
expected to release rst on average. Events in (b) where iresd the rearward head
unbinds will alter the simple relation between binding and tepping direction, but
these (potentially uncommon) events are ignored at the lelef detail in this model.
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Figure 11: Part (a) illustrates a rate model to minimally describe T-g#e's e ect
on dwell times (actually, the steady-state natural lifetine). Such a simple model
would doubtfully predict detailed measurements, e.g. theandomness [86]. The
dashed region that contains abstract states, and s, describes the overall ATP uptake
mechanism, which includes T-gate within a Michaelis-Mento structure. The state
s3 represents the remainder of kinesin's chemical cycle. A paular form of the force
dependent rate,k(F) = 1= (F), is taken from Eq. 87. Part (b) provides a plot of
dwell times from the rate model in part (a) with parameters dduced by tting to
the model of Nishiyama et al. [56], tting with better than visual accuracy. That
the agreement with Nishiyama et al. is excellent is likely aesult of the choice in
Eq. 87, but this is not to state that our rate model is identicawith theirs (e.g. in the
manner [ATP]dependence is included). Used in part (b): = 3:10 nm, Ry = 193,
R, =5:08s* M ! k =137s 1 k(0)=857s !, k3=137s %, and T =300 K.
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CHAPTER VII

CONCLUSION

This thesis has examined RBM anew from several di erent aspis, including exam-
ining physical scales, non-equilibium constructs, and dagical examples. The notion
that RBM provides a natural and robust framework for nanosda biological systems
has been supported by these arguments. Emphasis has beencgthon the path
and cycle free energies as a powerful route to provide indighto the advantages and
widespread applicability of RBM compared to the macroscopialternative: the power
stroke. Indeed, power stroke schemes should be viewed asekeeption in very small
biological systems, since they appeal incorrectly to detainistic ideals. A further

distinction with RBM was also made in reference to Brownianatchets, which we
present as a distinct class of systems on the basis of freerggestructure, notably

the failure of a boundary-driven interpretation for Brownan ratchets. Examples of
RBM were provided for ubiquinone, rotary enzymes, and moletar motors, listed in

the order of increasing complexity of the underlying mech@m. In particular, bias

ampli cation was found to be a functional alternative to pover stroke and Brownian
ratchet approaches.

RBM, being a general scheme, has room for future work in botliné re nement
of its precise de nition and in the elucidation of new mechaems. The de nition
presented in this thesis has the compelling feature of folling directly from NESS
measures of irreversibility, rather than through some arbiary measure that is in-
spired by model power strokes. A primary di culty in this de nition was an appeal
to a logical sense of mechanical progression in a power s&pklong which the non-

equilibrium free energy pro le could be examined. Re nemeés on this de nition are
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indeed welcome. New RBM mechanisms grounded in a compellognition of RBM
also o er interesting prospects. For example, how might théechnology for e cient
manmade nano-machines be inspired from cellular mechansMm Such questions are

currently left to speculation.
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APPENDIX A

FOUNDATIONS OF RBM

A.1 Example: Brownian Motion

The calculation of averages for the Brownian particle usinthe Langevin equations
in Section 3.1 follows from the combination of white noise avages Eq. 45 and the
solution Eq. 46 [90]. For example, the heat input due to theral noise is derived to
be

D E
Qin h (H)xi

1 Z
(t) m dt 2 V= (ty)
0

+(Vo V|:)et= + VE

Z

dt, €2 9= (t t,)+0
0

3>

Z

A
m dtz (t to)

A ksT
so= (88)

i.e. a constant. Similar procedures can demonstrate that éhaverage of the trajectory

follows the deterministic relaxation:

)i = (Vo Ve)e & + ve (89)
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where, as beforey, is the initial velocity at t =0, and v = F= is the asymptotic

velocity. The velocity correlation function is readily deived as well

hv(t)V(t2)i h v(ty)ihv(ty)i =

V% el i t2j= e (i*tz)= (90)
: P———— . . . .
with vy = kg T=mthe thermal velocity. In particular, the variance ofv(t) is:
v(i)2 hv@)ic=VvZ 1 e® (91)

which approaches the usual valug? of equilibrium thermodynamics for timet
Other averages, e.g. the di usion constantx? h xi?, are completely analogous.
Supposing that the initial velocity vy is averaged over the Boltzmann distribution

(represented byf g) simpli es many results. Equations 89 and 91 become

fhv(t)ig ve 1 efF (92)

v(t)?2  fh v(t)ig?

V2 (93)

Equations 92 and 93 can be applied to investigate the averagewer delivered to the

particle under the in uence of the forceF
fhF v(t)ig = F fhy(t)ig=Fve 1 e © (94)

and also the di erence between thermal power input and digsative drag output to
the medium

nD Eo )
Qin vi)2? = Fvg 1 eF 0 (95)

Notice that the large factors ofkg T= due to Brownian uctuations exactly cancel
in Eq. 95, suggesting that the average heat exchange with tmeedium is a sensible
guantity in the overdamped limit (ref. Eg. 34 in the next secion). The di usional

growth of the positional variance also simpli es in this cas

d —
it x> =2D(t) (96)
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for the time-dependent di usion constantD(t) = D(1 e ¥ )andD = kg T=. This
result approaches the standar% fhx?ig = 2D fort , and is more generally known

as the Ornstein-Farth formula [90].

A.2 Irreversible Heat Production and Boundary Driven Pro-
cesses

The irreversible heat production rateQ;, in Eq. 27 is a useful quantity in chemical
kinetics. If the contribution in the summation for Q;, is zero for any given set of
transitions, these transitions must support zero steady ate current. If transitions
between all states in an entire regiorR are associated with zero irreversible heat
production, then R must have null internal steady state current (a form of local
equilibrium) [80].

A special class of systems, i.e. those with a NESS free enepgential for the
path free energy, have a special interpretation in terms @&, . To see this, suppose
a regionR in a reaction network has the potential ;. Qi can be decomposed into
1 X X X X 1 X X

i Jij i Jij

5 ij Ji (97)
i2R j2R i2R j2R i2R j2R

Qir =

The term for transitions within R is simpli ed by use of the divergentless condition

for steady state currents (derived from the master equatign

X X
Jij = Jij =0 (98)
i i
which implies
1 X X 1 X X X X
> iJdi = 3 (i )i = iJij
i2R j2R i2R j2R i2R j2R
0 1
X X X X X
= i Jj = @ A Ji
i2R £<2R i2R j i2R
= iJij (99)
i2R j2R
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i.e. the heat contribution for transitions between statesn R reduces to a boundary
term. If the potential for states at this boundary is constah a second application of
Eq. 98 demonstrates the heat production rate in Eqg. 99 is zer@hus, R is internally
at equilibrium if and only if its boundary is at equilibrium, and the process withinR
is a boundary driven process.
Boundary driven systems can also be discussed in terms of thath a nity for

a process with a potential (ref. Eq. 28). The path a nity is zeo between states of
equal ; potential, and in particular, a region with an equipotentid boundary cannot
have biased internal trajectories. The appearance of the dtegeneration as a non-
equilibrium potential function can similarly be used to appoach boundary driven

systems [67].

A.3 Power Strokes in the Deterministic Limit of Fokker-

Planck Equations
The spatial displacements in a mechanism are often approxated suitably by a
Fokker-Planck equation. When the dynamics additionally & dominated by the de-
terministic drift portion of the Fokker-Planck equation, the dynamics can be shown
to have progressive irreversibility (ref. Equations 63 an®4) and to thus typically
satisfy the proposed de nition of a power stroke in Section.8. This is outlined for
a simple one-dimensional example, where all statements canprinciple be explored
explicitly.

The one-dimensional Fokker-Planck equation, Eq. 31, is us# formulate a simple
example of a power stroke. The power stroke starts at positiox = 0 and ends at
X = L, and can be taken to have the steady state probability distbution
el (x) U(X)=ke T

(S) X) = (]
PP X) “OL ds € () U()=ke T

(100)

that has been normalized for simplicity. A positive probaliity current J is taken (in

the direction of the power stroke), such that by Eq. 34, the &e energy function (x)
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is monotonically decreasing. The potential energy functioU(x) is assumed to be
monotonically decreasing, with a \power stroke energy” U = U(L) U(0) many
times larger in magnitude thankg T. Furthermore, the forceF = @U=@%g always
su ciently large and varies slowly throughout the power stioke (these conditions can
be made precise). These restrictions di(x) can be relaxed in some cases that are not
explored here. The NESS free energy dierence (x) = (X) (0) is determined

from Eg. 33 to be

S ds @t

e WHeT =1 1 g 0T (101)
0 ds &/(s)=ks T
for a total free energy expenditure (L) = o- Equations 100 and 101 provide all

the relevant information to explore this proposed power stike in this section.

The dynamics here need not arise purely from explicit forcesd interactions with
the medium (in the sense of the discussion in Section 3.1), @k changes in the free
energy pro le are interpreted as arising from irreversiblgiscous heat production. Let
the probability current J(x) of the stationary probability distribution p®(x) instead

be de ned by
@

J(x)= V(X D @x P (x) (102)

for drift velocity V(x) and di usion constant D. Then, the drag constant and force
F= @U=@can bedened by = D=kgT and F = V, respectively. Eq. 34 still
holds, i.e. @ =@x% v, such that provides an e ective drag force constant that
provides the irreversible heat generation for a given norgeilibrium ensemble velocity
v. This generalization may be useful in systems where chenlit@nsitions contribute

to the uctuations already imposed by the viscous medium, wikh may arise from the
many chemical interactions in a molecular power stroke meghism [58]. Whether
irreversible heat is primarily chemical or viscous drag inature is inconsequential
here.

Progressive irreversibility for this model follows from tle conditions onU(x) along
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with a further condition

o U (103)

The results here are mostly insensitive to moderate violaths of Eq. 103, where,
for example, the case with U < o requires care primarily for values ok that
satisfy U(x) . o (this is a region where the power stroke has allowed approxate
thermal equilibration). The most basic observation is thathe steady state velocity
pro le

F(x) @

v(x)= —~ D — Inp®(x) (104)

@x
is dominated in most regions by the deterministic term. Thats, deterministic drift
follows

F()

V(X) (105)

Thus, Brownian motion can be demonstrated directly to be mdly irrelevant for
steady state dynamics, such that a deterministic limit is aproached. By Eq. 34,
the gradient in the NESS free energy potential for a power stke is dominated by

dissipation due to explicit forces

%>£X) F(x) (106)

or upon integration

(x) U(x) (107)

The heat generated by the viscous dissipation thus ariseoifn a release of internal
energy, as would be predicted by macroscopic thermodynamidDue to the assumed
functional form for U(x), the system is also progressively irreversible. The intel

0<x <L can be partitioned into many path segment$; that satisfy
(Pi) keT (108)
where the spatial width of eachP; is approximately

Le(Xi) = ke T=F(x;) (109)

80



for a representative pointx; in P;. Eg. 109 reiterates the conclusion in Eq. 52:

irreversibility sets in when irreversible viscous drag hé@&xceedskg T.
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APPENDIX B

RBM KINESIN MODEL

B.1 Extended Model of Biasing

This section develops a model to explain kinesin's bias in aamner more complete
than the heuristic model in Section 6.2. The roles of weak lding, di usion, and
internal strain in these dynamics are incorporated througlhe considerations of Sec-
tion 6.1. Key results are congruent with those from transion state theory.

The framework of the present model, as with the heuristic med, utilizes a co-
ordinate x along the microtubule that represents the position of an untund kinesin
head relative to the microtubule-bound headx is restricted to exist on the reduced
interval x 2 [ d;d] (ref. Section 6.1.1), and the boundaries = d; d of this reduced
interval represent binding sites that can induce transitios to and from weak binding
states. Connecting the two heads are the neck linkers, whighin at a neck linker
junction (i.e. an e ective coiled-coil) that is located at ®me pointy in the reduced
interval. Load is exerted at this junction by the coiled-cdistalk, such that a factor
e Fy=s T weights neck linker contributions in the probability dendly calculations (ref.
Eq. 110 below).

The combined in uence of neck linkers and external load supes a free energy
landscape for the variablex, as partitioned into the stationary Boltzmann distribu-

tions p,.s(x) and pys(x) for the zippered and unzippered states, respectively. The
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Figure 12: A network diagram to describe the bias of kinesin's step, pvaing the
rates necessary for Eq. 119s, represents the reduced interval, the state where one
kinesin head remains unbound.s; and s represent the plus and minus-end weak
binding states, respectively. J is the steady state probability current entering the
process (due to kinesin binding ATP to the microtubule-boud head), andJ.,J are
the exiting currents (due to strong binding transitions). The labelskP are given to the
rates of weak binding from a di using state, k" to the rates of weak state unbinding
(e.g. from Eg. 86), andk® to the rates of strong binding. As a simpli cation, the
strong binding rates equal a constank® that is independent of load. The essential
irreversibility of the strong binding step corresponds to darge free energy decrease
for strong binding transitions (consistent with the RBM principle).

distributions are obtained through the convolution:
yA 1
yAa NNy Nza) n(x o y) e FYkeT dy

z
1

Pz;s(X)

110

z, (110)
z,* nY) n(X y) e PYeTdy

1

Pu:s (X)
with N the number of peptide units per neck linker, y the neck linker density (ref.
Eq. 84), F the load force at the junction of the neck linkers, ana the link length. Z,
and Z, are constants at a given load, with their ratio determined bythe free energy

of zippering  ,, (ref. Eq. 85):

R
pZ'S(X)dX =kg T
PZ:P = Ri’ - e zu =Kp 111
) Pu;s (X)dx (111)

Once Z, and Z, are determined by normalization of the total probability P, + Py,

the stationary probability distribution for the unbound state is known.
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For the loads and parameter ranges considered, the distrifbons in equations 110
and 111 have a single most probable zippering state in the geborhood of each bind-
ing site (zippered for plus-directed binding, unzipperedof minus-directed binding).
An approximation used routinely below is then to assume thabnly zippered states
bind forward and only unzippered states bind rearward, i.eto neglect contributions
of the less favorable zippering state. Relaxation of this ssmption is simple but
clutters the details of the model.

Kinetic aspects of our model are included to determine bindgy and unbind-
ing rates. This kinetic portion in the reduced interval obeg a pair of coupled,
one-dimensional Fokker-Planck equations that reproducédné stationary densities in
Eqg. 110. De ne U,(x) and U,(x) to be the respective free energy functions that
generate these densities at a given load - that is:

Uz(X)=kg T

Pzs(x) = e

Pus(x) = e htokeT (112)

Using these de nitions, the non-stationary zippered and urippered densitieg,(X;t)

and py(x;t), respectively, are taken to satisfy:

@pxt) . ,@ 1@y @p

ot = Pax kT e ax T We®p Walop
t 1
% - D@@x ke T %ﬂpu %ﬁ:( Wy (X)pu + Way(X)p,  (113)

Wuz(x) = qu(X) = e Uzu (X)=kg T

with U, (x) = U, (x)  Uy(x), D the diusion coe cient, and W,,(x) and W, (X)
the transition rates between zippering states. Direct sulitution veri es that Eqg. 112
is the stationary solution to Eqg. 113.

Implicit in Eg. 113 is the peculiarity that the head-to-headseparationx is as-

sumed to change on a timescale much slower than the positigrof the neck linker
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junction (y is integrated out). This assumption can be considered meyeh modeling
simpli cation, consistent in spirit with the choice to use areduced interval in place
of the coiled-coil (ref. Section 6.1.1).

Weak binding states in our model may transform to and from diusing states via
weak unbinding and binding, respectively, at the boundargof the reduced interval
(x = d). Coupling relations are here given for the plus-end bindgn site, while
behavior for the minus-end site is supposed identical. At agn time, there exists a
probability Py to exist in the weakly bound state. Coupling between the coimuously
di using system and the weak binding state is achieved thragh the introduction of
boundary conditions that linearly relate Py, to the valuesp,(x) and %((x) at the
plus-end boundary (ref. Appendix B.2 for an alternative, dicrete approach). This

linear relation is established via two parametersy, and ¥ , such that:

d
—ztw = V,Pyw +% py(d)

(114)
dPy _ _ 1 @y,

where J(x) is understood to be the probability current in the continuum. Eq. 114
implies both dpd—gv = J(d), which is the statement of probability conservation, and
Vi Pw +4& p,(d) = J(d), which provides the aforementioned linear boundary con-
dition. & is interpreted as the a nity to weakly bind when near a binding site, with
binding rate ¢ p,(d). v. is the rate for a weak state to unbind back into the reduced
interval at position x = d. In our model, ¥ is assumed to be a constant, while.
may vary with internal strain according to Eq. 86 (thus requiing the calculation of
the entropic neck linker force on a weakly bound kinesin heat a given load).
Binding and unbinding rates may now be calculated via appramations similar to
those in transition state theory, where as a simpli cationrates most strongly depend

on con gurations near the binding site [104]. The rate formlae below are in this way
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explored with an uncoupled approach that considers only theingle most probable
zippering state in the vicinity of each binding site. For cooniseness, only the plus-
end boundaryx = d will be considered. Analogous results apply to the minus-én
boundary.

Transition rates between meta-stable states often reduce & knowledge of mean
rst passage times (MFPT's) [104, 23], which for our problenare the mean times for
the system to either weakly bind or unbind. Letting (x) be the MFPT for a given
process (either binding or unbinding) that at initial time has the positionx within
the reduced interval, the function (x) for a one-dimensional, zippered state head in

the potential U,(x) satis es [23]:

1 @V @, _ 1
T oM e 5 (115)

such that a set of boundary conditions (related to weak bindg) de ne a unique
solution for (x). Eg. 115 is solvable with straightforward integrals.

Denotexy as some typical point in the reduced interval away from the hamdaries
(e.g. xo =0), and W as the plus-end weak binding state (not to be confused with ¢h
ratesW,,; Wy;). The MFPT for a given process starting at this weak binding taite is
denoted . Weak state binding, i.e. the process starting axo and ending atW, is
denotedxo ! W, while unbinding, i.e. the process starting aWW and ending atXxy,
is denotedW ! Xxo. The MFPT for each of these may be calculated using Eq. 115

with the boundary conditions:

Xo! W : w=0; &d= § (@; &( d=0
(116)

W xo:  w= (+2; &d=2L; (x)=0

as may be derived from consideration of the backwards equati [23]. A brief outline

of the derivation that leads to Eq. 116 can be found in AppensdiB.2.
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With a few assumptions, related to the free energy pro le neathe boundary,

these MFPT's can be expressed using:

Z d
D=0 : o ESES; dx (117)
Xo MS
to give:
+
Xq | th
ot W) Doy
(118)
1 th
! il _th
(W ! Xo) v 1+
Using Eq. 118, the low anity ( ) and high a nity ( th) limits are

clearly expressed.

The low a nity limit is taken for our modeling, such that  need not be known.
On physical grounds, this limit re ects that there exists anentropic barrier before the
onset of binding, e.g. due to the orientational speci city bbinding that is excluded
from the one-dimensional model. As expected from transitiostate theory, the low
a nity limit predicts that the rates of weak binding (v ps( d)) and unbinding (v.)
are equal to the quasi-equilibrium rate of crossing the statboundariesx = d. In
contrast, the high a nity limit problematically hinders es cape from the boundaries
x = d, as indicated by the reduction of the weak state unbinding ta from the
desired valuev. .

Once binding and unbinding rates have been determined, calation of the total
bias in our model follows from the rate diagram in Fig. 12, whe the ratesk?, k¥,
and k? are de ned in the gure caption. In steady state, the bias (ie. the ratio of

the probability currents J, and J for forward and backward binding, respectively)
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is then:

La‘Ln
+

I
o
=

tot
(119)
kP 1+ (kW=k5)
S G ES)
with p representative of the bias due to di usion leading to weak bding and
representative of transitions from weak binding states. Asxpected, if weak binding
states are long-lived compared to strong binding transitics (not generally true), the
overall bias is purely a di usional/zippering e ect. Notice that the parameter W
disappears from Eq. 119, due to taking the rati&?=kP (this assumesv” is equal at
each binding site).

Numerical calculation of the stationary distribution ps(x), needed in Eg. 118, was
done with the convolution in Eq. 110. Both Eqg. 110 and its nor@ization can be
evaluated through direct numerical integration. For estimtes of weak state unbinding
(from Eg. 86), the force on a weakly bound head must be known.his may be done
by nding the equilibrium position y = y of the neck linker junction, such that the
forces on this junction (due to the load and the forces of theaak linkers) are balanced
for kinesin's doubly-bound con guration. The entropic nek linker force in Eq. 83 was
in this way used to nd y with a simple root nding routine, which then provided

the needed force that determines the rate of weak state unioiimg.

B.2 Mean First Passage Time Boundary Conditions

The boundary conditions in Eq. 116, used for the calculationf mean rst passage
times in Appendix B.1, are not all obvious at rst glance. Thé derivation is readily
achieved through consideration of a discrete rate theory ithe limit of a small grid
spacing. Basic steps of this reasoning are presented in tb#dwing text, though some

well-known results are only cited. A di erent treatment exsts that avoids the limit of
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a discrete theory. However, such an approach is somewhatslesraightforward than
the discrete approach.
Consider a series of states labeled with index A probabilistic process with

one-dimensional, nearest-neighbor transitions is takem evolve as:

%:t)_ Piaw 1+ Paw,,  Piow +w, (120)
with t the time, P; the probability to be in state i, and w; the transition rates from
state i to statesi 1. Points of exit for this process may be created through the
creation of an absorbing state, such thaP; = 0 is imposed for some statg.

The mean rst passage time problem for Eg. 120 is readily s@d. In analogy to
the continuous case, the mean rst passage time function is the mean time for a

process that starts in statei to rst exit via an absorbing state. The function ; can

be shown to satisfy the recurrence relation [23]:
1=w (s D)+W (i1 ) (121)

A unique solution to Eq. 121 follows from appropriate boundsg conditions, such as
i =0 when there exists an absorbing state af.

A useful continuous limit exists for a choice of transitionates in Eq. 120. Using

the new variablex; = i inthe limit ! 0, the rates:
. _ AKX) D A(xi) D
Wi = S+ W = > =+ (122)

reproduce the distribution of the continuous stochastic mcess with velocity eld
A(x) and di usion constant D [23]. Likewise with the above rates, the continuous
limit of Eq. 121 is Eq. 115 ifA(X) = 2+ S4(x).

With the above developments, construction of a system with ixed continuous and
discrete parts may be analyzed with a discrete approach. Ftre current demonstra-

tion of weak binding and unbinding, a weakly bound state is ehti ed with i = 1,



while the continuously di using states of an unbound tetheed head are identi ed

with i 0. Transitions to and from the weakly bound state are de ned:

0 A(Xo) , D
W =05 WiSve; Wo= —; wp = (2°)+—2

(123)

with Eq. 122 de ning the remaining transition rates fori> 0. It can be demon-
strated that with these de nitions, the dynamical boundary conditions Eqg. 114 in
Appendix B.1 are satis ed. Thus, the dynamics of this systenmare as supposed.
Additionally, Eq. 121 then straightforwardly leads to boththe boundary conditions
Eg. 116 and the continuous equation Eq. 115 for the mean rstgssage time problem,
where the cases of weak binding and unbinding in Eq. 116 cap®nd to the presence

or absence, respectively, of an absorbing state at 1.
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