
Chapter 3.  

 

The Brownian motion work theorem 

 

3a) The general expression for Newton’s second law for Brownian objects 

subject to fluctuating thermal forces, )(
~

tF , and secular forces, such as the 

swimming force, 
S

F , is given by the Langevin equation 
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where the shape factor for a prolate ellipsoid of revolution, K  , has been 

included and is equal to one if the semi-major axis, R , and the semi-minor 

axis, r , are equal, as in the case of a sphere. The fluctuating force 

components are statistically determined by 
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This means that correlations last for an extremely short time, modeled here 

by a Dirac delta function of the time variables, are vanishing for different 

Cartesian components, modeled here by the Kronecker delta function of the 

Cartesian indices, proportional to temperature and also proportional to the 

drag coefficient of the drag force. This last factor is the substance of what is 

called the fluctuation-dissipation relation because it connects the strength of 

the fluctuations to the rate of dissipation. The fluctuating force is completely 

independent of the secular force, the swimming force, i.e. 
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In appendix 3.1 the types of calculations producing results to be presented 

here are elucidated. In the appendix, the Brownian particle is assumed to be 

a sphere whereas here the shape factor, K  , is included as well.  

 



 The relaxation time for the Langevin equation above is given by 
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This permits rewriting the Langevin equation in the form 
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This equation has the formal solution 
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The first term depends on the initial velocity that is given by a Maxwell 

distribution and which will ultimately be averaged over with respect to the 

Maxwell distribution. The second term results from the secular swimming 

force. Because the drag force is proportional to the velocity, the steady state 

result of the secular force is a constant velocity rather than a constant 

acceleration as would be the case in the absence of a drag force. The 

exponential time dependence in the first two terms decays to zero very 

quickly for very short relaxation times. Thus, in steady state the initial 

velocity term is absent and the secular force term is the constant 
R

M


S
F
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The third term is of a different kind because it is never constant but instead 

fluctuates indefinitely. It represents the residual thermal fluctuations that 

accompany the secular motion. Only its statistical properties can be 

determined and this is done through averaging.  



 To determine the average work done by the three parts of the 

Langevin force it is necessary to perform double averages (see appendix 3.1) 

of products of the forces with the velocity. These averaged products yield 

the power, and their time integrals over a finite time interval yield the work 

done for that time interval. The secular force power is given by 
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The velocity contains an initial velocity term that does not survive the 

Maxwell averaging, and a fluctuating force term that does not survive the 

stochastic force averaging. Each of these terms vanishes because they are 

linear. The Brownian motion stochastic force power is given by 

 








 
  )(

~
)(

~)(
exp

1
}(t))(

~
{

0

st
st

ds
M

t
R

t

FFvF


 

 

)(623
)(

exp
1

0

stKrkT
st

ds
M

R

t








 
  


 

 

R

kT
KrkT

M 
 3623

2

1
  

 

The factor of  3 is from the dimensionality of the description and the result is 

one thermal unit of energy, kT , per relaxation time. As will be seen below 

for ubiquinone, for which the relaxation time is very short, this is a very 

large power. Finally, the drag force power is given by 
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wherein the definition of the relaxation time has been substituted several 

times. Notice how the Maxwell average of the quadratic initial velocity term 

is cancelled by one of the terms in the quadratic fluctuating force term, 

yielding a constant final result. This fact is an aspect of what is called 

stationarity for this stochastic process.  

 

 Notice that the Brownian motion fluctuating force produces a positive 

power, i.e. the fluctuating force does work on the Brownian particle. In 

contrast, the drag force produces a negative power, that means the Brownian 

particle does work against viscosity. The magnitudes of these two powers is 

the same. The work done on the particle by the fluctuating force is precisely 

cancelled by the work done against viscosity. This is a manifestation of the 

fluctuation-dissipation relation.  

  

3b) For the minnow, the secular force power is 
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in which gmM 134 , s
R

222  (recall from appendix 2.1 that 598.1K   

and cmr 2 ), and dynesKrF
S

60v6
SS
  ( scm /100v

SS
 ). Clearly, the 

relaxation time in this case is not small. The maximum power at times long 

compared to the relaxation time works out to be 5.96 x 10
-4

 Watts (W). This 

is barely more than ½ mW. While this may seem rather small it only means 

that the minnow’s swimming involves a power about 100 times smaller than 

a 60 W light bulb. Since the Stokes drag force is really not valid for the 

minnow because it’s secular motion is at such high Reynolds number, the 

actual power needed to swim is somewhat larger.  

 

The thermal power, on the other hand, is given by 

 

W
s

ergskT

R

23

14

107.5
222

1018.4
33 









 

 

This is 19 orders of magnitude smaller than the secular power and again 

underscores the insignificance of the thermal fluctuations for the minnow’s 

motion. 

 

3c) The corresponding results for the E. Coli are more interesting. The 

relaxation time is 6.53 x 10
-8

 s, as was noted earlier. Therefore, the 

saturation formula for the secular force power may be used 
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The values for the physical quantities introduced for E. Coli in chapter 2 

were used to get this: gmM 12102  , scm /102v 3

SS

 , 204.1K , 

cmr 4105.0  , poise027.0 , and dynesF
S

710612.0   (this is 

equivalent to 0.612 picoNewtons (pN)). This is an incredibly small power 

compared with the minnow.  

 

 The thermal power, however, is given by 
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While this is a fraction of a picoWatt (pW) it is nevertheless four orders of 

magnitude larger than the secular power. The E. Coli’s world is dominated 

by thermal energy. Recall that its thermal speed is 100 times larger than its 

maximum secular velocity. Nevertheless, through flagellar propulsion the E. 

Coli can produce a secular run for an average of one second using very low 

power (12 attoWatts). This highlights what can be done with low power by 

sustained secular motion in a background of vigorous thermal motion. As 

has been emphasized, the thermal motion is associated with very short mean 

free paths and mean free times so that at the end of a typical E. Coli run the 

thermal root-mean-square displacement is only 1/40 the length of the run.  

 

3d) For ubiquinone the relaxation time is 4.07 x 10
-15

 s. This is so short a 

time that the damped exponential in the power formulas can be totally 

ignored. Ubiquinone does not swim inside the membrane lipid bilayer 

because it does not have fins nor a flagellum. For the sake of argument 

suppose that it did have some means of propulsion to secularly cross the 80 

Angstrom membrane in the diffusion time 2.75 x 10
-6

 s. This corresponds to 

a hypothetical secular velocity of scm /29.0v
SS
 . Since the Stokes drag 

coefficient for ubiquinone is sgmR /105.36 7 , the hypothetical 

secular force required for this would be 
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i.e. about one pN. This means that the saturated hypothetical secular force 

power is 
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which is a few femtoWatts. While there is no known physical mechanism for 

such a secular motion for ubiquinone, this gives a value against which to 

compare the thermal power. 

 

 The thermal power for ubiquinone is given by 

 

W
s

ergskT

R

6

15

14

1008.3
1007.4

1018.4
33 












 

 

This is nine orders of magnitude larger than the hypothetical secular power. 

While microWatts (W) may sound small, it is enormous for a single 

molecule. The ubiquinone world is overwhelmingly dominated by thermal 

energy. How can this large thermal power be understood? It is a result of the 

erratic path taken by Brownian motion. As was discussed in chapter two, the 

actual path length is orders of magnitude greater than the thickness of the 

membrane. As the ubiquinone executes the Brownian motion it does work 

against the viscous Stokes drag force regardless of which direction it is 

moving. An estimate of this effect can be obtained as follows. The total 

thermal energy expended in crossing the membrane is the product of the 

diffusion time and the thermal power 
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The average drag force is determined by the thermal speed multiplied by the 

Stokes drag coefficient. Since the thermal speed is 5.34 x 10
3
 cm/s and the 

drag coefficient is 3.5 x 10
-7

 gm/s, the average drag force is 1.87 x 10
-3

 

dynes. If this average drag force acts over the entire Brownian path length, 

L, then L must be equal to the thermal work done divided by the average 

force, which yields 4.5 x 10
-2

 cm. This is about 5 times longer than the 

estimate made in chapter 2 using a simpler argument. Part of this difference 

is that here the work was calculated for a three dimensional process whereas 

in chapter 2 the description was restricted to one dimension and this 

accounts for a factor of 3. Thus, the two estimates are very close after all. 

The important point is that a great deal of work must be done by Brownian 



motion the get the ubiquinone across the membrane and this amount of work 

dwarfs any metabolic energy magnitudes. Nevertheless, the Brownian 

fluctuating force provides just the required large amount of energy to the 

Brownian particle. The energy supplied precisely balances the energy 

dissipated by viscosity. Moreover, the diffusion time taken by Brownian 

motion to get ubiquinone across the membrane, a few s, is very small on a 

metabolic process time scale that is typically ms. Also important is the fact 

that Brownian motion would not be able to accomplish the systematic 

transfer of ubiquinone across the membrane if it were not rectified. The 

rectification results from asymmetric boundary conditions caused by 

metabolically generated concentrations of electron donors and acceptors. 

Energies on the metabolic scale create enough asymmetry to do the trick. In 

chapter 2 it was shown that the redox potential difference between the 

electron donor and the electron acceptor for ubiquinone is about 0.32 x 10
-12

 

ergs per molecule. This is much less than the nearly 10
-4

 ergs expended by 

rectified Brownian motion to effectuate the transport. If the hypothetical 

secular force computed above moved the ubiquinone across the membrane 

then the work done that way would be 1.02 x 10
-7

 dynes x 8 nm which 

equals 8.16 x 10
-14

 ergs. This is about a quarter of the redox energy 

difference. If the redox energy could be directly harnessed as a secular force 

on the ubiquinone, it would be adequate to do the job at reasonable 

efficiency (about 25%). However, this is not what happens. While with 

rectified Brownian motion as the mechanism, much much larger energy 

magnitudes are involved, the thermal energy of the cell is more than 

adequate to meet the needs. 

 

Appendix 3.1 Double averaging for the Langevin equation 

 

 It took until 1908 for a mathematical description of Brownian motion 

to be formulated. This was done by Paul Langevin and the resulting equation 

is called the Langevin equation. It is given by 
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for a sphere in three dimensions. M  is the Brownian particle’s mass,   is 

the viscosity (in poise, gm/cm-s) of the fluid in which the particle is 

immersed, R  is the particle’s radius and )(
~

tF is a fluctuating force. The term 

vR6  is called the drag force and is valid only for the linear v  regime. At 

higher velocities, more complicated processes become possible. The specific 

form of the drag force given here is for a spherical particle and the drag 

coefficient, R6 , was originally calculated from the Navier-Stokes 

hydrodynamic equations by Stokes in 1851. While it was derived for a 

macroscopic sphere, it is known to be valid even for molecules. The 

fluctuating force is a phenomenological term designed to represent the effect 

of fluid molecules colliding with the Brownian particle. In liquid water, 

these collisions occur on a sub-picosecond time scale. The fluctuating force 

is characterized statistically and this makes the Langevin equation a 

stochastic differential equation. 

 

 The symbol  ...  will be used to denote averaging with respect to 

)(
~

tF . The first assumption about )(
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tF is that  
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This means that the random force on the Brownian particle caused by the 

collisions with fluid molecules is equally likely to be from the left or the 

right, the top or the bottom or from in front or from behind. Even when the 

Brownian particle is moving with velocity v , this is so as long as v  is not 

too large. The second assumption about )(
~

tF has to do with the fluctuating 

force’s two time correlation function  
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Several points need to be emphasized about this expression. At this stage   

is just a parameter to be determined below. The factors of kT2 , where k  is 

Boltzmann’s constant and T  is the absolute temperature (in Kelvins), imply 

that the fluctuation strength increases with temperature. The Kronecker delta 



function implies that the different Cartesian components are statistically 

independent. The Dirac delta function of time implies that the value of )(
~

tF  

from one instant to the next is totally uncorrelated. This is, of course, an 

approximation to reality but means that any real correlations in time are for 

such short times relative to all other time scales in the problem that they can 

be ignored.  

 

 The fact that we do not need any more assumptions about the statistics 

of )(
~

tF , such as higher order correlations, represents what is called the 

Gaussian property of )(
~

tF . This property reflects the fact that )(
~

tF  is caused 

by myriads of fluid molecules and their summation satisfies the central limit 

theorem of probability theory, thereby yielding a Gaussian process. 

 

 The Langevin equation is solved formally by 
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which can be verified by differentiation. It is now clear that a time scale for 

this description is given by the relaxation time, 
R

 , given by 
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Thus the correlations in  )(
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 above must exist for times 

R
tt  . Using  ... , one obtains 
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since averaging and integration are both linear operations. This means an 

integral is the limit of a sum, and the average of a sum is the sum of the 

averages. If  0)0( v  , then  (t)v  will decay to zero. However, one 

expects the Brownian particle to come to thermal equilibrium with the fluid 

at temperature T as t . To see how this happens, one must look at the 

kinetic energy. This means that, aside from a factor of 2/M , one needs the 

values of  )()( tt vv . From the formula for )(tv  above the inner product 

can be formed. Note, however, that the cross terms are linear in )(
~

tF  and, 

therefore, will average to zero. Thus, one gets 
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There are two ways to look at this. First one can let t  and require 

thermal equilibrium. 
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From statistical mechanics it is known that that TkM
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This identity is called the fluctuation-dissipation relation since it connects 

the strength of the fluctuating force correlations,  , with the drag 

coefficient, R6 . With this result, one gets for finite t  that 
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This sets the stage for the second perspective. The )(tv  is determined by 

random force fluctuations on the Brownian particle. Even though the 

average velocity dies to zero, the random forces keep kicking the Brownian 

particle around. Thus )0(v  should be determined by the Maxwell 

distribution 
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that is written in normalized form so that 
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Averaging with respect to the Maxwell distribution is denoted by {...}. Thus 
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Consequently, one obtains 
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for all t  by virtue of a cancellation. This last property exhibits the 

characteristic of the Langevin process called stationarity because it is 

independent of the absolute time t . A deeper exhibition of this property is 

the identity, not derived here, 
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that shows a dependence on || tt   and not on the absolute times t  and t   

separately. This sort of time dependence is an example of the stationarity 

property of this stochastic process. Note that even though )(
~

tF  has a Dirac 

delta function correlation, the driven process, )(tv , has an exponentially 

decaying correlation with the characteristic time scale 
R

 .  

 

 There are analogues to these results for voltage, or current, 

fluctuations and resistance, for reaction progress variable fluctuations and 

reaction rates, for flux fluctuations and the diffusion constant and for many 

other systems. In each of these, the strength of the two-time fluctuation 

correlations is proportional to the relaxation parameter. 
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