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School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332 
(Received 7 February 1972; Revised Manuscript Received 9 March 1972) 

The theory of multiplicative stochastic processes is contrasted with the theory of additive stochastic processes. 
The case of multiplicative factors which are purely random, Gaussian, stochastic processes is treated in detail. 
In a spirit originally introduced by theoretical work in nuclear magnetic resonance and greatly extended by 
Kubo, dissipative behavior is demonstrated, on the average, for dynamical equations which do not show dissipa­
tive behavior without averaging. It is suggested that multiplicative stochastic processes lead to a conceptual 
foundation for nonequilibrium thermodynamics and nonequilibrium statistical mechanics, of marked generality. 

1. INTRODUCTION 

The purpose of this paper is to present results in 
the theory of "multiplicative stochastic processes." 
The physical applications of this theory will be pre­
sented in a sequel to this paper. 

Effective use of stochastic processes in physics was 
first achieved in the theory of Brownian motion.1 

The basic ideas were generalized by Onsager and 
Machlup in their theory of fluctuations and irrever­
sible processes.2 Further generalizations, which 
resulted in a general stochastic theory for the linear 
dynamical behavior of classical thermodynamical 
syst'ems, close to but not yet in full equilibrium, were 
presented by Fox and Uhlenbeck. 3 ,4 The theory of 
Fox and Uhlenbeck includes the Langevin theory of 
Brownian motion and the Onsager and Machlup theory 
for irreversible processes as special cases. In addi­
tion, it includes the linearized fluctuating hydrodyna­
mical equations of Landau and Lifshitz 5 and the 
linearized fluctuating Boltzmann equation as special 
cases. 

In each of these special cases, and in the general 
theory, the mathematical description used involves 
either linear partial integro-differential equations 
or linear matrix equations which are inhomogeneous. 
The inhomogeneity is the stochastic "driving force" 
of the process. Consequently, we shall refer to these 
processes as "additive stochastic processes." The 
processes to be presented in this paper will be seen 
to involve homogeneous equations in which the sto­
chastic "driving force" enters in a multiplicative 
way. These processes will, consequently, be called 
"multiplicative stochastic processes." 

Multiplicative stochastic processes arise in a natu­
ral way in the field of nuclear magnetic resonance. 
The nature and history of this development may be 
found in a paper by Redfield. 6 Major generalizations 
of these ideas for other areas of physics have been 
presented by Kub07- 9 Kubo has also pursued the 
mathematical foundations for a theory of multiplica­
tive stochastic processes in his work. The speCial 
attention paid to purely random, Gaussian, stochastic 
processes in this paper will serve to further clarify 
and support the spirit of Kubo's earlier work. 

2. MATHEMATICAL PRELIMINARIES 

The fundamental stochastic process to be considered 
here is the purely random, stationary, Gaussian pro­
cess.10 Let q,(t) denote such a process. Processes 
with an average value of zero will be considered 
throughout. This is denoted by 

(q,(t» = O. (1) 

The mean square correlation is given by 

(q,(t) q,(s» = 2X1i(t - s), (2) 

where A is a constant. The purely random quality of 
the process is reflected in the presence of o(t - s). 
The dependence upon time differences only, in (2), 
reflects the condition of stationarity. The Gaussian 
property may be introduced in terms of the higher 
order averaged products. All odd order averaged 
products are zero: 

All even order averaged products are given by 

(q,(t 1)··· q,(t2n » = _1_ ~ j~l (q,(tp(2)q,(tP(2r1))) 
2nn! PES2n 

1 n 
= -- ~ 2n i\n IJ 0(tP(2j) - tp(2j-1»' (4) 

2nn! PES2n )-1 

~PES denotes the sum over all permutations p of the 
symril"etric group of order (2 n)!, S2n' Because the 
two orders of the arguments of a delta function give 
the same value and because each arrangement of fac­
tors in a product of delta functions gives the same 
value, each distinct term in (4) is (2nn! )-fold redun­
dant. Since S2n is of order (2n)! the expression in (4) 
has [(2n)!/2nn!] = 1'3'5'" (2n -1) distinct terms. ll 

3. ADDITIVE STOCHASTIC PROCESSES 

The prototype for the application of stochastic pro­
cesses to physical phenomena is found in the theory 
of Brownian motion. 1 ,3,lO,12,13 The velocity u(t) of 
a heavy particle with mass M in a fluid which is in 
thermal equilibrium obeys the Langevin equation 

Md~~t) = _ au(t) + F(t), (5) 

where a is the dissipative, friction coefficient, and 
F(t) is a purely random, stationary, Gaussian driving 
force. It is thought that F(t) corresponds with the 
true microscopiC force on the heavy particle which 
is produced by a great quantity of collisions in rapid 
succeSSion, between the heavy particle and the mole­
cules constituting the fluid. From a point of view 
which considers time on a much longer scale than the 
scale determined by the time between collisions, the 
true force may be replaced by F(t). This means that 
Mia » Te , where Te measures the microscopiC colli­
sion correlation time, and Mia measures the relaxa­
tion time from the macroscopic viewpoint. 

By assuming that F(t) is purely random we have that 

(F(t)F(s» = 2D5(t - s), (6) 

which means that microscopiC collision correlations 
last effectively "no time" in the macroscopiC time 
scale. In this way, a purely random process is used 
to describe a situation involving two distinct time 
scales: a microscopic time scale and a macroscopiC 
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time scale. Because the fluid remains in thermal 
equilibrium throughout the relaxation process, f(t) 
is also stationary. The Gaussian property for F(t) 
may be thought to be a consequence of the _central 
limit theorem of probability theory since F(t) results 
from the collective effect of large numbers of ther­
mally randomized collisions. USing the equipartition 
of energy theorem leads one to the Einstein relation 

(7) 

in which T is the temperature, and KB is Boltzmann's 
constant. Equation (7) is the prototype of so-called 
fluctuation-dissipation theorems. 3 ,4 

Equation (5) is manifestly inhomogeneous and exhibits 
the" additive" quality of this stochastic process. The 
process described by (5) is a one-component station­
ary, Gaussian, Markov process. The generalization 
to N-component stationary, Gaussian, Markov pro­
cesses has the form 3 

d ",-
dt ai(t) = ~ Aij aj (t) + L..J 5ij aj (t) + Fi(t), 

] .1 

(8) 

where i = 1,2, ... ,N, Aij is an N x N antisymmetric, 
real matrix, 5 .. is an N x N symmetric, real matrix 
with nonpositiie eigenvalues, and Fi(t) is an N-com­
ponent purely random, stationary, Gaussian "driving 
force". The analog to (6) is 

where Qi' is a symmetric matrix with nonnegative 
eigenval~es. Corresponding with (7) is the general 
fluctuation-dissipation theorem 

(9) 

(10) 

where Gij = Aij + 5ij , and Eij is the entropy matrix 
which appears in the second-order formula for the 
entropy 

5(t) = 50 - ~KB~ ~ a;(t)EiPj(t). 
• J 

(11) 

Ei . is symmetric and positive definite. Note that (8) 
is] also manifestly an "additive" stochastic process, 
with N components. The general physical applicability 
of (8)-(11) suggests that the interactions generated 
by a macroscopic system which is fluctuating about 
its equilibrium state may be characterized as purely 
random, stationary, Gaussian "forces." 

4. MULTIPLICATIVE STOCHASTIC PROCESSES 

An alternative usage for stochastic processes in the 
description of nonequilibrium processes is possible. 
The prototype for this alternative method will be 
called "frequency fluctuation dissipation." In Kubo's 
work this is the example of a harmoniC oscillator 
with a randomly modulated frequency. 7 

Consider a harmonic oscillator described by the com­
plex variable a(t). The equation of motion is 

:t a(t) = iwoa(t), (12) 

where i = ~,and Wo is the frequency of OSCillation. 
The solution is (12), is trivial, and is 

(13) 

Suppose that the oscillator is at temperature T, so 
that those physical properties which determine w 0 

exhibit thermal fluctuations. For instance, the length 
of a pendulum or the spring constant of a Hooke's 
law spring are such properties. As a consequence, 
the frequency of the oscillator will fluctuate. We will 
assume that this frequency fluctuation may be charac­
terized by a purely random, stationary, Gaussian pro­
cess ~(t) with mean value zero. The properties of 
~(t) are given by (1)-(4). Equation (12) becomes 

d . -
dt a(t) = z[wo + cp(t)]a(t). (14) 

The homogeneity of (14) is manifest, and the "multi­
plicative" nature of the stochastic process is evident. 
It will be proved that the average value of (14) is 

:t (a(t» = (iwo - A)(a(t». (15) 

The solution to (15) is clearly a damped oscillation, 
whereas the solution to (14), without averaging, is 
oscillatory. This example must be distinguished from 
an example of damped oscillations which arises from 
the Brownian motion of a harmonic oscillator. 3 

Proof of Eq. (15): The formal solution to (14) is 

a(t) = eiwo t exp(i J~ ~(S)ds)a(O). (16) 

Therefore, 

(a(t» = eiwo t ~xp i(J~ ~(S)ds)a(O). 
However, 

Using (3) gives, for odd n = 2 m- 1, 

«J~ ~(S)dS)~ = J~ '" J~ (~(sl)'" 
X ~(s2m-l»dsl ... dS 2m-1 = O. 

Using (4) gives,for evenn = 2m, 

«J~ ~(S)dS) 1 
{t {t _ _ 

= Jo'" Jo (CP(Sl)'" cp(s2m»ds 1 •• , dS 2m 

Am = -(2m)!tm. 
m! 

Putting (20) and (19) into (18) gives 

(17) 

(18) 

(19) 

(20) 
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I. (. t - ) 0() (i)2m ~ m I m ~Xp l fo cp(s)ds = Eo (2m)! m! (2m). t 

= 23 (_~~)m = e-At. (21) 
m~O m. 

Therefore, putting (21) into (17) gives (15). This 
completes the proof. 

Because of (15), it is clear why (14) is called fre­
quency fluctuation dissipation. This is an example of 
a one-complex-component situation. There is also 
an N-complex-component generalization for multi­
plicative stochastic processes. However, it will later 
be shown that a multicomponent-complex situation is 
a special case of a multicomponent real variable 
generalization. Therefore, the multicomponent gene­
ralization will be given for the real variable case. 
The multicomponent case is proved using the purely 
random character of the stochastic "force" and the 
Gaussian property of its higher order averages. 

Let aa(t) for a = 1,2, ... ,N be an N-component real 
process which satisfies the equation 

(22) 

where Aaa' = -Aa'a aEd Aaa,(t) = -Aa,a(t). The 
matrix components of Aaa,(t) will be assumed to be 
purely random, stationary, Gaussian processes with 
average values of zero, and therefore, we have 

(iiaa,(t» = 0 for all a and a', 

(iias{t)Allv(s» = 2 Qatlllvo(t - s), 

(ii" v (S2n-1)···A" v (sl»=O, 
'-2n-1 2n-1 '-1 1 

(A" v (s2n)'" A" v (Sl» 
'-2n 2n '-1 1 

The average value of (22) is 

(23) 

(24) 

(25) 

(26) 

d
dt (aa (t) = ~ Aaa' (aa,(t» + ~ ~ Q aeea,(aa' (t». (27) 

a' a' e 

This is the generalization of (15). 

The proof to (27) is found in the Appendix. Here, we 
will give a plausibility argument for (27) which is 
made rigorous by the more lengthy, rigorous, proof 
in the Appendix. The irreversibility implicit in (27) 
will be demonstrated following the plausibility argu­
ment. 

From (22), by averaging, we get 

:t (aa(t» = z::; Aaa' (aa,(t» + ~ (Aaa,(t)aar(t». (2-8) 
a l a l 

It is the second term on the right-hand side of (28) 
which needs simplification. Integrating (22) with res­
pect to time between t - T and t gives 
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+ ~ f:- T Aaa, (S )aa, (S) ds. (29) 
a' 

Multiplying (29) by Alla(t), and summing over a gives, 
upon averaging the sum, 

~ (Asa(t)aa(t) - ~ (Atla(t)aa(t - T» 
a a 

+ ~ ~ tT (Alla(t)Aaa,(s)aa,(s»ds. (30) 
a a' 

Now, it seems plausible that because of (24) and (26) 
that 

(31) 

and 

(32) 

Using (31) and (32) in (30) will give 

~ (Atla(t)aa(t» = ~ ~ l-T (ASa{t)Aaa,(s)aa,(s»ds. 
a a a' (33) 

Using the Gaussian property of Allv(t) and (23) makes 
it plausible that 

~ ~ ft~T (Atla(t)Aaa,(s)aa,(s»ds 
a a' 

= ~ ~ l-T (ASa{t)Aaa,(s» (aa,(s»ds. (34) 
a a' 

For the right-hand side of (34) we use (24) and get 

~ ~ l-T (Asa(t)Aaa,(s» (aa,(s»ds 
a a' 

= ~ ~ tT 2QSaaa,o(t - s)(aCi/(s»ds 
a a' 

= ~ ~ Qtlaaa,(aa,(t». (35) 
a a' 

Putting (35) with (34) into (33) gives 

~ (ABa(t)aa(t» = ~ ~ QBaaa,(aar(t»· (36) 
a a' a 

Returning to (28) with (36) gives (27), if we simply 
rename indices. This plausibility argument depends 
upon the truth of (31), (32), and (34). In the Appendix 
it is shown that the result obtained in (27) is rigo­
rously achieved. 

5. lRREVERSlBlLITY 

The irreversibility in (15) is obvious. That of (27) is 
less easily seen. To see that irreversibility arises 
from averaging, we will consider both 4 aa(t) aa(t) 
and ~a (aa(t» (aa(t» using both (22) and (27). 

Using (22) and the antisyrumetry of both Aaa, and 
..4. aa , (t) gives 

#t ~ aa(t)aa(t) = 2 z::; ~ aa(t)Aaa,aa,(t) 
ex. 0:. a' 

+ 2 z::; z::; aa(t)A"",(t)a",(t) = O. (37) 
a a' 
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Therefore ~a aa(t)aa(t) is a conserved quantity dur­
ing the unaveraged time evolution. Using (27) and the 
antisymmetry of Aaa' gives 

d 
dt L; (aa(t) (aa(t) = 2 L; L; (aa(t)Aaa,(aa,(t) 

a a a' 

+ 2 L; ~ L; (aa(t) Qaeea,(aa,(t) 
a a' e 

= 2 L; L; L; (aa(t)QaetJa,(aa,(t). (38) 
ct a' e 

From (24) it follows that 

(39) 

LetYa be an arbitrary N-component vector. Using 
(39) gives 

L; ~ ~ yaQaeea'Ya' 
ex ct. 1 B 

= L; L; L; J~ Ya(Aae(t)Aea,(s)Ya,ds 
a a' e 

= - P J~ «~ Aea(t)Ya)(p, Aea,(S)Ya)dS 

:s O. (40) 

The last equality in (40) follows from the antisym­
metry of the matrix AJ.lv(t), and the inequality follows 
from the form of the integral. Putting the results 
expressed by (40) into (38) gives 

:t L; (aa(t) (aa(t» = + 2 L; L; E (aa(t) 
Ci a at e 

x Qaeea,(aa,(t):s O. (41) 

Therefore the quantity L;a (aa(t) (aa(t) shows a 
monotonic decrease to its equilibrium value. The 
inequality in (40) shows that the matrix Ee Qaeea' is 
a symmetric matrix with nonpositive eigenvalues. If 
all the eigenvalues of L;e Qaeea' are also nonzero, 
then the equilibrium state corresponds with (aa) = 0 
for all QI = 1,2, ... ,N. The possibility of zero value 
eigenvalues of L;e Q aeea' corresponds with the pos­
sibility of certain linear combinations of the (aa(t)'s 
being conserved quantities during the overall ap­
proach to equilibrium. In this case equilibrium is 
not characterized by (aa) = 0 for all QI = 1,2, ... ,N; 
for some QI, (aa) ;C- O. 

6. COMPLEX COMPONENT CASE 

A problem closely related to the real case just des­
cribed involves N complex components C a(t) for 
QI == 1, 2, .•. ,N satisfying the equation 

. d ~ ~ -
t dt Ca(t)::;:: L.J M"a,Ca,(t) + L-I Maa,(t)Ca,(t). (42) 

at ~, 

Both Maa, and Maa,(t) are complex Hermitian mat­
rices. Therefore 

(43) 

M aa' (t) is also a purely random, stationary, Gaussian 
process with average zero. This implies, in analogy 

with (23)-(26) that 

(Maa,(t) = 0, 

(Maa(t)MJ.lu(s) = 2Q~aJlv6(t - s), 

(MJ.l v (s2n-1)'" M" v (sl) = 0, 
2n-1 2n-1 '"I 1 

It will now be shown that the analog to (27) is 

(44) 

(45) 

(46) 

(47) 

d
dt (Ca(t) = - i L; Maa,(Ca,(t) - L; L; Q~eea,(Ca,(t) 

a l ex l e 

and that ~e Q~eea' is Hermitian with nonnegative 
eigenvalues. 

Each complex component Ca(t) may be written as 

\yherein a a(t) and b a (t) are both real. M aa' and 
M aa' (t) may be written as 

S - !. (M + M* ) act' - 2 aa' aa' , 

A - - !. (M - M* ) 
aal - 2 aa' (Xa! ' 

Saa,(t) = HMaa,(t) + M~a,(t)), 

Aaa,(t) = - ~ [M aa,(t) - M:a,(t))· 

(48) 

(51) 

(52) 

(53) 

(54) 

(55) 

With (43) it is seen that Saa"A aa" Saa,(t), and Aaa,(t) 

are real matrices and t~at Saa" and Saa,(t) are sym­
metric, while Aaa, and Aaa,(t) are antisymmetric. 
USing (49)-(51), (42) can be rewritten as 

+ is ( ~aaf(t) ~aa,(t)) (aaf(t)). (56) 
a' ~1 -Saa,(t) Aaa,(t) b af(t) 

Note that (:am) is a column vector with 2N real-
a 

valued components. Denote it by as (t), where 

aW) =; aa(t) for i3 = 1,2, ... ,N (57) 

and 
as(t) =; ba-N(t) for i3 = N + 1,N + 2, ... , 2N. 
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In the same spirit,A 681 will denote the anti symmetric 
matrix 

where 

Ae.8 1 == A88 1 for {3 = 1,2, ... ,N and {3' = 1,2, '" ,N, 

Ae.8 1 == 588 '-N for {3 = 1,2, ... ,N 

and {3' = N + 1,N + 2, ... , 2N, 

A68 1 == 58-N81 for {3 = N + 1,N + 2, ... , 2N 

and {3' = 1,2, ... ,N, 
and 

Ae.8 1 == A8-N81-N for {3 = N + 1,N + 2, ... , 2N 

and (3' = N + 1,N + 2, ... , 2N. (58) 

In a similar manner, define the 2N x 2N real anti­
~mmetric matrix Ae.8 1(t) in terms of S,xul(t) and 
A (l(X' (t). With these definitions (56) becomes 

2N 2N 
:t a6(t) = E A68Iae.I(t) + E Ae.81(t)a61(t), (59) 

8 101 8 '01 

which is a special case of (22). 

In order to get the analogue of (27) for (59) it is neces­
sary to determine the matrixE~ Q8ee8 1 defined by 

2N 2N 
E (Aae(t)Ao81(s) == 2 E Q8ee8/i(t - s). (60) 
94 94 

The left-hand side of (60) is computed by using the 
definition of A881 (t), (54), (55), and (45), in that order. 
The computation is straightforward and somewhat 
long. The results are 

for {3 = 1,2, ... ,N and {3' = 1,2, ... ,N; 

for {3 = 1,2, ... ,N and {3' = N + 1,N + 2, ... , 2N; 

(61) 

for {3 = N + 1,N + 2, ... , 2N and {3' = 1,2, '" ,N; 

2N (N N ) 
E QS998 1 = - -2

1 
E Qa-Ne981-N - E Qa~N9981-N 

9 0 1 9 0 1 9 0 1 

for {3 = N + 1,N + 2, ... , 2N 

and (3' = N + 1, N + 2, ... , 2N. 

At this point, the use of (49)-(51)' and (61) leads to (48) 
if one notices that 

(62) 

where 

J. Math. Phys., Vol. 13, No, 8, August 1972 

and 

are both real matrices. Therefore, it has been justi­
fied that (42) and (48) are a special case of (22) and 
(27). 

Via (45) it is seen that 

E E E Y: Q~eealYal 
a a l e 

= ~ J~ «~ M~a(t)Ya*)(p, Meal(S)Ya)dS 

2: O. (63) 

Therefore, Ee Q~99al has nonnegative eijlenvalues, 
and with (48) it is seen that the quantity Da (C:(t) 
(Ca(t) shows a monotonic decrease to equilibrium; 
whereas from (42) it is seen that the quantity Eo:c:(t) 
Co:(t) is a time invariant. These results are analogs 
of (41) and (37), respectively. 

7. COMPLEX BILINEAR FORMS 

Starting with Eq. (42), it is possible to define the mat­
rix p a8 (t) by 

and to ask what the time dependence equations for 
Pa8(t) and (P a8(t) are. One gets from (42) 

(64) 

. d ~ ~ -z dt Pa8(t) = L.J L.J (L0:80:181 + La8aI81(t»Pal/ll(t), (65) 
a l 13' 

- - - -* L0:80: 181 (t) = l3aaIM881(t) -1388IMo:al(t). 

Note that (43) implies that 

(66) 

(67) 

L:80:'81 = LO:1810:8 and L:8aI81(t) = LO:I8Ia8(t). (68) 

Both indices a and (3 range over 1,2, ... ,N. There­
fore it is possible to think of P0:8 (t) as an N2 com­
ponent "vector," and to think of L0:80:181 and 
L0:80:'8 1(t) as N2 x N2 "matrices." Equation (68) sug­
gests that these two "matrices" are Hermitian. Equa­
tion (67) shows that L a8 0:'8 1(t) is a linear combination 
of two purely random, stationary, Gaussian processes 
and is, therefore, itself a purely random, stationary, 
Gaussian process. Consequently, in this way of view­
ing (65) it is seen that (65) is a special case of (42), 
as well as being derived from (42). Therefore, 
(p a8 (t) will obey an equation which is the analog to 
(48). 
In order to get the equation for (p 0:8 (t) it is neces­
sary to obtain the analog of ~9 Q~geal which appears 
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in (48). Comparing (65) with (42) it is seen that one 
needs the analog of (45) which is 

(69) 

In order to explicitly determine Q~Ba'B'lllJll'lJ" one 
uses (67) and also (45). The exercise of a little alge­
bra yields 

Q~Ba'B'llvll'lJ' = 0aa,Ii IlIl ,Q8B'lJlJ' + 0BB,OVlJ,Q~:'IlIl' 
-li aa,olJlJ,Q8B'Il'1l - 0BB,ollll,Q~'avlJ" (70) 

Therefore, renaming indices leads to the analog of 
Ee Q~eea' which is 

E E Q~Bee'ee'a'B' = 0aa' E Qae'e'I3' 
e e' e' 

+ °1313 , E Q~~ea' - QaB'a'a - Q~'aBIl" (71) 
e 

Use of (45) shows that 

(72) 

If the left-hand side of (71) is defined to be RaBa'Il" 
then (71) and (72) give 

Ralla'Il' = 0aa' E QaeeB' + 0llll' E Q~aa'e 
e e 

- QaB'a'a - Q~'allil" (73) 

Consequently, the analog to (48) is 

ddt (PaB(t) = - i E E Lalla'B'(Pa'Il,(t) 
a' Il' 

The analog to the proof to (63) may be applied to 
Ralla'Il' by using (69). Therefore,for an arbitrary 
matrix X aB' which is thought of as an N2 component 
"vector," it follows that 

(75) 

Thus the eigen-"vectors" of Ralla'B' are really the 
eigenmatrices of a tetratic, and the eigenvalues are 
nonnegative. The case of a zero eigenmatrix, or 
eigen-"vector," is realized by using (69) and (67) 
which show that the identity matrix ° a' Il' is an eigen­
"vector" eigenmatrix with eigenvalue zero: 

E E ialla'B,(t)oa'B' 
(XI p' . 

= E E [oaa' Mil tl' (t) - 01l1l,M:a,(t)]oa'B' 
a' i3' 

= M Ba(t) - M:1l (t) = o. (76) 

Therefore, it also follows that 

B B RaBa'B,oa'Il' = B R aBee = O. 
a' B' e 

(77) 

The symmetry of RaBa'Il" which follows from (69), 
implies 

B Reeextll' = O. 
e 

Therefore, 

(78) 

because of (78) and a result like (76) which follows 
from (66): 

= Ma'B' - M;'a' = O. (80) 

Therefore, Ea (paa(t) is a conserved quantity. 
Nevertheless, (75) guarantees that (74) shows irrever­
sible behavior. 

8. PURELY DIAGONAL BILINEAR BEHAVIOR 

Again starting with (42), it is always possible to per­
form a unitary Similarity transformation whi£.h 
diagonalizes M aa' since M aa' is Hermitian. M aa' (t) 
in the new representation will not necessarily be 
diagonal, but it will still be Hermitian and a purely 
random, stationary, Gaussian process. Therefore, 
without loss of generality, (42) can always be trans­
formed into the form 

(81) 

wherein the d a are real numbers. This is equivalent 
with saying that M aa' is diagonal and is given by 

(82) 

The program of Sec. 7 can again be carried through 
with the simple modification that 

(83) 

Therefore, (74) becomes 

:t (Pall(t) = - i(dB -da)(Pall(t) 

- E E RaBa'Il'(Pa'Il,(t). (84) 
a' Il' 

Using this diagonal - M aa' representation, 

(Mall(t)MlllJ(s) = 2Q~lllllJ [oalJollll + 0allolllJ 

+ (1 - 0av)(1 - 01l1l)(1 - 0all)(l - 0lllJ)]o(t - s) 
(85) 

is a sufficient condition for the reduction of (84) into 
an equation involving only the diagonal elements of 
< Pall (t). The Kronecker delta factors in (85) require 
that either Q!, (3, /J, and v are aU different, or that 
either Q! = (3 or /J = v,or Q! = v and (3 = /J,or Q! = /J 
and (3 = v, in order that the over-all quantity be non­
zero. 

Sufficiency is demonstrated by using (85) in place of 
(45) in the calculation of R aB a' Il' as determined by 
(73). This is equivalent with replacing the occur-
rence of Q~Bllv in (73) with Q~BIlAO avo Bil + ° all ° Bil 
+ (1 - 0alJ)(1 -1i 131l ) X (1 - ° all )(1 -Ii BlJ )]. The re­
sult, after a modicum of computation, is 
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RaBalBI == OaOJOBBI(E QBeSBI + E Q~aale 
e e 

+ QBBBB + Q~aaa)- 2Q~'aBBI[OaIBOaBI 
+ 0aBOaIBI + (1 - 0aIB)(1 - 0aBI) 

X (1 - 0aB)(1 - 0aIBI)]' (86) 

Note that (86) implies that in order for R a B ,r 0 
UjJU" , 

then 
O! = {3 if and only if O! I == {3'. (87) 

Consequently, the expression for R aB al B I given by 
(86) will reduce (84) to an equation for the diagonal 
elements of (Pafj(t) only. Define P a(t) by 

(88) 

By using (88), the diagonal equation resulting from 
(84) is 

d 
dt P a(t) = E [W aalP al(t) - W alaP a(t)], (89) 

aI 

where Waa l is defined by 

Waal == 2Q~/aaal' (90) 

Equation (90) holds because (86) leads to the result 

Raaaial =: 0aal L; 2Q~eea - 2Q~/aaal' (91) 
e 

Returning to (45) it is seen that 

Waa' 2. O. (92) 

In addition, (79) may be rewritten using (88) to yield 

d 
dt L; P a(t) = O. (93) 

a 

9. FOKKER- PLANCK EQUATION 

Because the stochastic "driving force" for the multi­
plicative stochastic processes presented here is 
always characterized as a purely random process, as 
well as a stationary, Gaussian process, the resulting 
over-all stochastic process is a Markov process. In 
this section, the Fokker- Planck equation which fol­
lows from the Markov property will be presented for 
the real N -component case. As was demonstrated in 
Sees. 6 and ':I, the complex N-component case and the 
complex bilinear case are special cases of the real 
component case. Therefore, the Fokker-Planck equa­
tion presented below for the real component case is 
sufficiently general to cover all of these cases. 

The Markov property alone does not necessarily lead 
to a Fokker-Planck equation. The following condi­
tions are also necessary14: 

l}~ (1/~t) <aa(~t) - aa(O» == Aa[a 1 (0) ... a N(O)]; 

lim (1/~t)([aa(~t) - a(O)][aB(M) - afj(O)]> 
l:\t-+o 

== Ball [a 1 (0) ... a N(O)]; 
(94) 

These conditions do indeed hold for the real N-com­
ponent case as may be rigorously verified by appli­
cation of the techniques developed in the Appendix for 
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the solution to Eq.(22). Moreover,A a andB aB are 
explicitly found to be 

N ( N 
A (a '" a - A + a 1 N) - 6 aal E Qaeeal)aa" 

a' =1 S =1 
(95) 

(96) 

Using (95) and (96) when (94) is true for a Markov 
process leads to the Fokker-Planck equation14: 

a 
at P(a1(0)'" aN(O)\a1 '" aNt) 

N a [N ( N ) 
= - ~ aaa a~l Aaa' + ~ Qasea' 

x aa,P(a1(0)'" aN(0)\a1 '" aNt) ] 

N N a2 (N N 

+ ~ fj~ aaaaafj a~l B~l 
X Qaa'llll,a",a B , P(a 1 (0)'" aN(O)\ a1 ••• aNt»), 

(97) 

where P(a1(O)'" aN(O)\a l '" aNt) is the probability 
that a l (t) = al' a 2 (t) == a2 , ••• , and a N(t) = aN at time 
t> 0 if it was the case that a 1 (t) = a1 (0), a2 (t) 
= a2 (O), ... , and aN(t) = aN(O) at t = O. 

Define R "a' by 

(98) 

Equation (40) shows that Racx.' has nonpositive eigen­
values. 

By using (98), the summation over repeated indices 
convention, and leaving out the explicit aa dependence 
of P leads to 

a a 
at P = - aa [(Aaa, + Raa,)aa'P] 

a 

Equation (37) implies that Ea (a2 (t) is a time in­
variant. This property may alsoabe seen directly 
from (99). Averages are given in terms of P by 

(aa(t» == J aaP (a 1 (O)'" aN(O)\a 1 '" 

aNt)da l '" daN' 

(100) 

Therefore, using (99) leads to 

~ E (a 2 (t» 
dt a a 

= J 6 a2 ~ P da ... da 
a a at 1 N 

=: - J 6 a~" a! [(A(<a' + R aa,)aa,Plda1 '" daN 
ex" a 
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= 2 j a c,(Aacl' + Raal)aaJ Pda1··· daN 

+ 2 jOaBQacl'BBlaalaBIPda1··· daN 

= 2Raal(aa(t)aal(t) + 2Qaa1aBI(aa l (t)a B1 (t» 

= 2R aal(aa(t)aa l (t) - 2RaIBI(aal(t)aBI(t» = o. 
(101) 

The first equality foUows from (100), the second 
equality follows from (99), the third equality follows 
from integration by parts, the fourth equality follows 
from (100), and the last two equalities follow from 
(98) and a renaming of indices. Therefore, it is seen 
that the time invariance of 6 a (a~(t» is guaranteed 
by (97) or (99). Similarly, in the bilinear complex 
case, the time invariance of 6 a (Paa(t) will be 
guaranteed by the corresponding Fokker- Planck 
equation. 

A discussion of the solutions to (99) for general N 
will be reserved for a sequel to this paper. Here it 
will suffice to present the complete solution to (99) 
for the Kubo oscillator which is a one complex com­
ponent case, and as was proved in Sec. 6 corresponds 
with a two real components case. 

The Kubo oscillator is described by Eq. (12). Write 
a(t) as a(t) = ax(t) + iay(t) where both ax(t) and ay(t) 
are real. In this way (12) becomes a special N = 2 
case of (22), where 

_ (0 -CP(t») A(t) = _ , 
cp(t) 0 

(102) 

Qaall:lBI = A(oaloal2oBloBl2 + °a2oalloB2oBl1 

- 0aloal2oB2oBl1 - 0a2oalloBloBI2). (103) 

From (103) it is easy to compute Raa l as defined by 
(98) and this gives 

(
-A 

R= 
o 

(104) 

Using (102)-(104) in (99) for N = 2 gives 

~p=CJ.)(~a --a-a)p+A(~a +~a)p at aax y aay x aax x aay y 

+ A(£ a2 + £ a2 - 2 _a_
2
_a a )P. (105) 

aa2 y aa2 x aa aa x y 
x y x y 

At this point introduce polar coordinates: ax = r cose 
and ay = r sine. This implies 

a a sine a -= cose ----­
aax ar r ae 

a . a cose a 
and aa

y 
= sme ar + -r- ae· (106) 

Using (106) in (105) leads, after a modicum of algebra, 
to 

~P=-W..i.P+A£p 
a t a e a e2 ' 

where P = P(r(O)e(O)lret) and P(r(o)e(o)lreo) 

(107) 

= oCr - r(O»o(e - e(O». From (107) it is seen that 
P may be factored, 

P(ret) = R(rt) W(et), (108) 

and (107) becomes two equations: 

~R(rt) = 0 and 
at 

a a a2 
- wee, t) = - w - wee, t) + A - wee, t). (109) 
at ae ae2 

With the initial condition for P given beneath (107) 
the solution to (109) for R is R (rt) = O(r - reO)). The 
solution for wee, t) with periodic boundary conditions 
is given by 

w(a, t) = 1 ~ exp (- (a - a(o) + 2Krr - wt)2). 
.J 4rrAt Kc-O(J 4At 

(110) 

This describes a diffusion process on a circle coup­
led with a streaming term given by wt. The complete 
solution to (105) is then given by 

P{r(o)a(o)lret) = o[r -r(O)] ~ 
y4rrAt 

x ~ exp (_[a-e(0)+2Krr-wtJ2 ). (111) 
Kc-oo 4At 

It is possible to use (111) to reconfirm (15). 

10. CONCLUDING REMARKS 

The physical implications of the equations presented 
in this paper are relevant in the areas of nonequili­
brium thermodynamics and nonequilibrium statistical 
mechanics. A fuller treatment of the appropriate 
physical interpretations for these equations will be 
presented in a sequel to this work. For the present 
it will suffice to indicate several immediately ob­
vious points. 

Additive stochastic processes have been used to 
explain Brownian motion by Langevin's equation, to 
explain non equilibrium thermodynamics close to full 
equilibrium by the Onsager and Machlup equations, 
and to explain these first two cases, as well as the 
fluctuating hydrodynamic theory of Landau of Lifshitz, 
and the fluctuating Boltzmann equation, by the general 
theory of stationary, GaUSSian, Markov processes 
presented by Fox and Uhlenbeck. All of these cases 
are limited to dynamical behavior near full equili­
brium, and all of these cases are classical. 

Multiplicative stochastic processes, as presented in 
this paper, suggest physical applications in the follow­
ing cases. The most simple case is the case of fre­
quency fluctuation for the harmonic oscillator, as was 
originally proposed by Kubo. The generalization to 
the real N-component case as given by (22) and (27) 
corresponds with the Liouville equation with a Hamil­
tonian that contains a fluctuating contribution to the 
overall energy. 9 Equation (22) is the matrix repre­
sentation of the partial differential equation which 
provides the classical Liouville description. The 
complex N-component case corresponds with the 
Heisenberg matrix representation of the Schrodinger 
equation. Equation (42) is the relevant equation and 
contains a Hamiltonian which has a fluctuating con­
tribution. Averaging (42) leads to (48) which depicts 
the decay of total probability as may be seen using 
(63). In order to avoid this physically unreasonable 
consequence, the denSity matrix formulation is pre­
sented by Eq. (65), and (74) corresponds with the 
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averaged density matrix equation. Equation (79), in 
contrast with (48) and (63), implies conservation of 
total probability, even though (75) guarantees that 
(74) describes irreversible behavior for the whole 
averaged density matrix. In the literature (74) is 
referred to as the Redfield equation. 6 Here, the poten­
tial physical applicability of (74) is greater than the 
nuclear magnetic resonance context usually associa­
ted with Redfield's equation. In the special case in 
which (85) is realized, the Redfield equation (74) is 
seen to reduce to (89) and (92) which comprise the 
Pauli master equation for the diagonal elements of 
the average density matrix.15 

All these cases show that multiplicative stochastic 
processes pertain to both classical and quantum 
mechanical considerations. The restriction of addi­
tive stochastic processes to physical applicability 
corresponding with dynamical behavior close to full 
equilibrium does not apply to multiplicative stochas­
tic processes. This follows from the difference in 
the levels of description each case involves. In the 
additive stochastic process case the description is 
relatively macroscopic such as in fluctuating hydro­
dynamics, in the fluctuating Boltzmann equation, and 
in nonequilibrium thermodynamics. These levels of 
descriptions are usually nonlinear; but their linear 
approximations are required in order to obtain their 
stochastic description. The linearization step re­
quires the restriction of applicability to near full 
equilibrium. In contrast, in the multiplicative stoch­
astic process case the description is relatively 
microscopic such as in the fluctuating Liouville equa­
tion and in the fluctuating density matrix equation. 
The levels of description are intrinsically already 
linear, so that no linearization step is required, and, 
consequently, there is no corresponding attendant 
limitation to physical applicability. 

The possible limitations to physical applicability of 
multiplicative stochastic processes arise with res­
pect to the validity of introducing a part of the total 
Hamiltonian which is a purely random, stationary, 
Gaussian process. This consideration will be made 
in detail in a sequel to this work which stresses the 
physical context. For the present, simply note the 
existence of the rigorous theorem, the proof of which 
is found in the Appendix aqd the consequences of 
which are found in the text, for multiplicative stochas­
tic processes "driven" by purely random, stationary, 
Gaussian "forces." 
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APPENDIX: PROOF OF EQ. (27) 

Define Ra(t) by 

R a(t) == ~ [e-At]aa,aa,(t), 
a' 

where A denotes the matrix with components Aaa" 
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(A1) 

and 

[e-At] == f; (-l)n (An) tn 
aa' no 0 n! aa" 

Also define L aa' (t) by 

Laa,(t) == l:) l:) [e-At]aBAB8,(t)[eAt]B,a,' (A2) 
B s, 

Via (A1) and (A2), (22) may be written as 

d ""-dt Ra(t) = u Laa,(t)Ra,(t). (A3) 
a' 

Because 1.(t) and 1.(s) do not necessarily commute for 
t ."t. s, (A3) must be solved using time-ordered integ­
rals: 

Ra(t) = P Eo J~ J~k J~k-1 ... J~3 J~2 
x ~ l:) ... l:) l:) 

X L p1a ,(Sl)ds1 ... dskRa,(O), (A4) 

where t :::: Sk:::: sk-1 :::: ... :::: S2 :::: sl :::: O. Define 
W:a,(t) by 

W~a,(t) == J~ J~k ... J~2 l:) ... 
Pk-l 

X l:) (Lap (Sk)'" Lp a,(sl»ds 1 ... ds k. (A5) 
p 1 k-1 1 

Equations (25) and (A2) imply that 

W~a,(t) = 0 for all odd k. (A6) 

Consider all even k, such that k = 2m for m = 1,2,···. 
Notice that Eqs. (26) and (A2) imply that 

(L" U (s2m)'" L" v (Sl» 
"'2m 2m "'1 1 

(A7) 

where 

(L IlU(S) Lil 'v' (S'» 

= ~ ~ ~ ~ <[e-AS]llaAaa,(s)[eAS]a,v 
a a' B il' 

x [e-AS]Il'B[eAsh,v'O(S - s'). (A8) 

In particular, (AS) leads to 

~ (Llle(s)Lev(s'» 
e 

= 2 ~ ~ [e-As]lla ~ QaeeB,[eAs]B'vo(s - s'). (A9) 
a B' e 

Using (A7) in (A5) for k = 2m gives 
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W~a,(t) = J~ J~k ... J~2 ~ ••• ~ ~ ••• ~ 
Ilk "l Uk vI 

x (L (S. )L 
IIp(2j)vP(2j) p(2J) IIp(2j-l)vp(2j-l) 

X (Sp(2j-l») ds 1 ••• ds k' (A10) 

Using (A8) in (A10) gives 

W~a,(t) = J~ J~k ••• J~2 L; ... L; L; . .. ~ 
Ilk /-II "k vI 

X [e AsP(2j)] Q [e -ASp(2j)] 
aj up(2j) aja?, j8 j IIp(2j-l)8 j 

X [e
ASp

(2j)]8j Vp(2j-l) 0 (sp(2j) - sp(2j-l»ds l ••• dSk' 

(All) 

This complex expression for W~a,(t) reveals its inner 
structure and leads to major simplifications. Define 
f~g,(Sk'" sl) by 

f~g,(Sk'" sl) == ~ ••• ~ ~ ••• 
Ilk III V k 

k-l m 
X~O 0 no n~~~ 

all k a'v l 1=1 vI+l/-l1 j =1 , 
vI a j a j 8 j 

X ~ [e -ASp(2j)] [e ASp(2j)] 
il'. I'p(2j)aj a'vp(2j} 

J 

X Q , , [e- Asp(2j}] [e ASp(2j)] , (A12) 
ajaj8j8j /-IP(2j-l)8 j 8j Vp(2j-l) 

for each p E S2m' Therefore, putting (A12) into (All) 
gives 

m 
f~g, (Sk'" Sl) III o (Sp(2j) - Sp(2j-l» 

X dS l ••• dSk' (A13) 

m 
X III 0(Sq(2j-l) - Sq(2j-1»ds l ••• dSk (A14) 

for each q E S2m' Let the set N be given by 

N == {q E S2m I j~l O(Sq(2j} - Sq(2j-l» 

contains the factor o(Sk - Sir-I)}' 

and let the set Z be defined by 

Z == {q E S2m I jfj1 c5(sq(2j) - Sq(2j-l» 

does not contain the factor c5(Sk - sk-1)}' 

Clearly,Z contains q's such that n;;l 0(Sq(2j}-Sq(2j-1) 

contains the factor B(Sk - SI) for I ";C k -1. Since the 
order of the two time arguments in a delta function 
does not alter its value, and since the order of the 
delta functions in a product does not alter its value, 
then there are 2mm! permutations in S2m which yield 
identical nj=l o (Sq(2j) - Sq(2j-l»' The number of per­
mutations inN is 2m[(2m - 2)!];because there are 
two ways of ordering Sk and Sir-I in o(Sk - Sk-l)' there 
are 'In ways of ordering the product with respect to 
the factor B(Sk - Sir-I) and m - 1 other factors, and 
there are (2m - 2) [ ways of permuting the remaining 
2m - 2 time variables. The number of permutations 
in Z is 2m (2m - 2)[ (2m- 2) I]; because there are two 
ways of ordering S k and SI in 0 (s k - SI)' there are m 
ways of ordering the product with respect to the fac­
tor o(Sk - SI) and m - 1 other factors, there are 
(2m - 2) choices for I ";C k - 1, and there are (2m -2)[ 
ways of permuting the remaining 2m - 2 time vari­
ables. In summary, it follows that S2m = N U Z, 
N n Z = (/J, and (2m)! = 2m[(2m - 2)!] + 2m(2m - 2) 
[(2m- 2)!]. If g(s, s') is an arbitrary function of two 
time variables, then the preceding counting scheme 
leads to 

~jfjl g(Sq(2j}' Sq(2j-1» I q E N\ 
= ~ g(s k' S k-l) ji: g(sr(2j} - sr(2j-l» IrE S2m-2 f . 

(A15) 

Each term on the left-hand side of (A15) is redundant 
2m times if g(s, s') is symmetric in sand s'. A 
special instance of (A15) is: {n;;l o (Sq(2j) - Sq(2j-l» I 
q E N} = {B(Sk - Sir-I) n;;ilO (Sr(2j) - Sr(2j-l) I 
r E S2m-2}' Equation (A15) will be useful later, and 
the redundancy factor 2m should be noted. 

Using (A14) in (A13) gives 

Wk (t) = _1_ L; 2mlakaP,(t) 
aa' , 

2mm. PES2m 

= ~ L; Ikq (t) + _1 L; Ikq (t) 
m! q EN aa' m ! q EZ aa' . 

(A16) 

It will now be shown that 

I~&,(t) = 0 for each q E Z. (A17) 

Because q E Z, 

;;
t ;;Sk ;;S2 Ikq (t) = '" f kq (s ... S ) 

aa' 0 0 0 aa' k 1 

m, 

X III 0(Sq(2j) - Sq(2j-l»ds 1 '" dSk' (A18) 

m, 
where Il 0(Sq(2j) - Sq(2j-l» is defined by 

m 
III o (Sq(2j) - Sq(2j-l» 

m, 
== O(Sk - SI)O(Sk_l - Si) III B(Sq(2j) - Sq(2j-l»' 

(A19) 

Recall that q E Z implies that l ";C k - 1. Therefore, 
there is some i such that i ";C k and i ";C land 
O(Sk-l - s;) appears as a factor in the product 
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n~1 0(Sq(2j) - Sq(2;-1»)' Note that I~~,(O) = 0 and 

d (t (5k- 1 (52 
dt I~~,(t) = Jo Jo ••• Jo nZ,(t, Sk-1' ••• , SI) 

m, 
X o(t - SI)O(Sk-l - Si) jf}1 o (Sq(2j) - Sq(2j-l») 

x dS 1 ••• dSk-l' (A20) 

The time ordering of the integrals requires that 

(A21) 

The only singular contributions to the integrand of 
(A20) are in the product of delta functions since 
f ~~, (t, S k-l' ••• , S 1) is a bounded integrable function 
as is seen from (A12). The integrations in (A20) are 
performed in the order ds l' ds 2 , ••• , dsk- 1 • After the 
dSi integration, the 0 (s k-l - Si) term will no longer be 
present, and the functional dependence of the remain­
ing integrand will no longer be singular in Sk-1 be­
cause no other delta function besides o(sk-l - Si) con­
tains Sk-1 or si' For all sk-l < t, the oU - SI) term 
and (A2l) imply that the integrand is zero. There­
fore, only S"-1 = t can contribute to the over-all inte­
gration with respect to sk-l' Thus, when the dS k- l 
integration is finally performed, the remaining inte­
grand is zero for Sk-l < t and is not singular in Sk-l 
anywhere in the interval [0, t]. Therefore, the Rie­
mann integral over dSk- 1 from 0 to t gives zero. This 
proves that for q E Z, (d/dt)I~~,(t). = O. Coupling this 
result with I~~,(O) = 0 implies that for each q E Z 
I ~~, (t) = 0 for all t. Consequently, (Al7) is proved. 

Returning to (Al6), (A17) implies that 

W~a,(t) = m\ 6 I~Z,(t)· 
. qEN 

(A22) 

Using (Al2) and (Al4) yields 

Jt J5k JS2 
"" Ikq (t) = "" . .. f kq (s '" S ) L.J eta' L.J 0 0 0 aa' k 1 

qEN qEN 

m 
X jf}1 0(Sq(2j) - Sq(2j_l»)ds l ••• dS k 

= 6 J~ J~k " • J~2 E E E E 
qEN Ilk IIk-1 Uk vk-l 

mil 
X O(S" - Sk-l) 11 o (Sq(2 i) - Sq(2i-l») 

X dS 1 ••• dsk , (A23) 

wherein n~~1 o (Sq(2i) - Sq(2i-1») is defined by 
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m 

[11 0 (Sq(2 i) - Sq(2 i-I») 

m" 
== O(Sk - Sk-1) [11 o (Sq(2;) - Sq(2i-l»)' 

If 

and (Al5) are used, then the expression in (A23) be­
comes 

E I~Z,(t) = 2m E J~ J~k J~k-1". J~2 
qEN rES2m_2 

xE"·EE,,· 
II k-2 "1 Uk-2 

X [e- ASr (2j)] [eAS .. (2j )1 I 

f'r(2j-d3j .6j~"{2j-l) 
m-l X n1 0(Sr(2i) - Sr(2 i-1») dS I ••• 

X dSk-2dsk_ldsk' (A24) 

The factor 2m comes from the redundancy require­
ment discussed following relation (Al5). Because 
r E S2m-2' it also follows that 

and this has been used to get (A24) from (A23). 
Using (Al2) for k - 2 shows that (A24) is equivalent 
to 

" [e -ASk] E Q [ ASk] ;. aa m "'mememtl';' e tl';'vk-1 
em 

X o(s - S ) (sk-1 ••• (s2 /,k-2 r 
k k-1 Jo Jo vk-1"" 

m-1 
X (Sk-2'" SI) if}1 0(Sr(20 - Sr(2i-1») 

x dS 1 ••• dSk_2dsk_1dsk 

X O(Sk - Sk_1)I~~~1~'(Sk-l)dsk_1dsk' (A25) 

The second equality in (A25) follows from (Al4) for 
k -2. 
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By using (A13) and (A14) it also follows that 

(A26) 

because k - 2 = 2(m - 1). Now, if one last quantity 
N a u (S k) is defined by "-1 
Navk-1(S") = ~ ~[e-AS")aa BQa e e 1l,[eASk)B'V , 

elm Bin m em m m m m m "-1 
(A27) 

then together with (AI3), (AI4), (A25), and (A26) this 
leads to 

x wt-2 (yJ(s"_l)ds,,_lds,, 
k-1 

t 
= B fo N av (Sk)wt-2 a,(sk)ds", (A28) 

v k-1 "-1 k-1 

wherein the dSk - l integration with Ii(s" - Slrl) in the 
integrand and s" as an integration limit introduced a 
factor of t which cancelled the 2. By differentiation, 
(A28) gives 

~ W" (t) = B N (t) W"-2 (t). (A29) dt aa a v k-1 v k-1 a' 
Uk-1 

By returning to (A4) and (A5), (A29) permits the 
writing of 

d 00 d 
dt (Ra(t) = B ~ dt Wia,(t)Ra,(O) 

a f k=O 

= ~ is %t W~~,(t)Ra'(O) 
a f m=O 
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00 
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a' m =1 IJ 

00 
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v eL' m=O 

= B Nav(t)(R)t). (A30) 
v 

USing (AI) and (A27) finishes the proof of (27) with 

It should be noted that this result is equivalent with 
the statement that the time-ordered integrals which 
arise in the formal solution to (22) yield nonzero 
quantities upon averaging, only if the product of delta 
functions which occurs is "properly ordered." By 
"properly ordered" is meant that 

(A31) 

since Dj=l Ii (s(2j) - s( 2j-l») in the integrand of the 
time-ordered integral leads to a nonzero quantity, 
whereas any other pairing of time variables leads to 
zero. Therefore, only permutations which satisfy 
(A31) give "properly ordered" delta function products. 
In the proof presented here this property has been 
arrived at by "peeling off" two time variables at a 
time, and noting that to get a nonzero result that the 
two time variables "peeled off" were "properly 
ordered" relative to all possible time variables. 
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Long-Wavelength Normal Modes of Crystals with Coulomb Interactions 
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An investigation is made of the behavior of the normal modes of vibration in the long-wavelength limit for in­
finite crystal lattices in which Coulomb interactions are present. The work is applicable to point ion models 
with any crystal structure. Rules are derived which are helpful in determining the long-wavelength behavior of 
the normal modes from symmetry considerations. A study is made of the conditions under which the branches 
of the phonon dispersion relations will approach definite frequencies in the long-wavelength limit. Finally, a 
number of examples are presented which illustrate the preceding analysis. 

I. INTRODUCTION 

The presence of Coulomb interactions in an infinite 
lattice has a marked effect on its lattice dynamics at 
long wavelengths. Neither the dynamical matrix nor 
the phonon dispersion relations have well-defined 
values at infinite wavelength for such lattices. In fact, 

in some cases, a branch of the dispersion relations 
will not even approach a definite frequency (indepen­
dent of the direction of the propagation vector) as the 
propagation vector approaches zero.l The standard 
methods of group theory used to analyze the behavior 
of the dispersion relations at long wavelengths must 
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